NOAA Technical Memorandum NMFS

MARCH, 1995

REPORT OF 1993-1994 MARINE MAMMAL AERIAL SURVEYS CONDUCTED WITHIN THE U.S. NAVY OUTER SEA TEST RANGE OFF SOUTHERN CALIFORNIA

> James V. Carretta Karin A. Forney Jay Barlow

NOAA-TM-NMFS-SWFSC-217

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center

NOAA Technical Memorandum NMFS

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

NOAA Technical Memorandum NMFS

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. The TMs have not received complete formal review, editorial control, or detailed editing.

MARCH 1995

REPORT OF 1993-1994 MARINE MAMMAL AERIAL SURVEYS CONDUCTED WITHIN THE U.S. NAVY OUTER SEA TEST RANGE OFF SOUTHERN CALIFORNIA

James V. Carretta Karin A. Forney Jay Barlow

La Jolla Laboratory, SWFSC National Marine Fisheries Service, NOAA P.O. Box 271 La Jolla, California 92038-0271

NOAA-TM-NMFS-SWFSC-217

U.S. DEPARTMENT OF COMMERCE

Ronald H. Brown, Secretary

National Oceanic and Atmospheric Administration D. James Baker, Under Secretary for Oceans and Atmosphere National Marine Fisheries Service Rolland A. Schmitten, Assistant Administrator for Fisheries

CONTENTS

	page
List of Tables	ii
List of Figures	iii
Abstract	1
Introduction	1
Materials and Methods	2
Results	8
Effort	8
Spatial and Temporal Overview	8
Effects of Beaufort Sea State	9
Species Accounts	9
Dolphins and Porpoises	10
Baleen Whales	13
Toothed Whales	<i>.</i> 14
Pinnipeds	17
Acknowledgements	
Literature Cited	
Tables	23
Figures	57

LIST OF TABLES

	Page
Table 1.	Sea state conditions measured by the Beaufort scale (from Bowditch, 1966) 23
Table 2.	Numbers of kilometers surveyed in the SWFSC study area and other areas on each of 58 survey dates. Dates where attempted survey flights were aborted due to poor weather are not included
Table 3.	Effort, group encounter rate, and animal encounter rate information for the three geographic and two sub-areas analyzed. Group encounter rates represent the number of on-effort sightings per 100 km searched. Animal encounter rates represent the number of animals per 100 km searched. 17,650 km were searched in all areas
Table 4.	On-effort sighting information for all species encountered during 13,734 km surveyed within the SWFSC study area. The category "unidentified whale" includes "unidentified large whale" and "unidentified small whale"
Table 5.	Seasonal group encounter rates for species encountered on-effort within the SWFSC study area. Only species (or species groups) detected a minimum of five times within the study area are included
Table 6.	Seasonal mean school sizes for species encountered on-effort within the SWFSC study area. Only species detected a minimum of five times within the study area are included
Table 7.	Marine mammal species codes used during 1993-1994 aerial surveys 30
Table 8.	All on and off-effort cetacean and pinniped sighting information for 1993-1994 aerial surveys. Sightings are listed alphabetically by species code ("SPEC1", "SPEC2"), and secondarily by sighting number ("SI#"). The percent composition ("%") of each species within the school is given, as well as sighting types: "O" (=off-effort), "P" (=primary observer), or "S" (=secondary or belly window observer). The observer ("OBS") who detected the animals is given by a two-letter code. Independent school size estimates (up to five) are anonymously given 31

LIST OF FIGURES

page

Figure 1.	Southwest Fisheries Science Center (SWFSC) study area and transect grid 57
Figure 2.	Sub-areas "A" and "B", which collectively represent the SWFSC study area, and Area "C", with transect grid. Area "C" is where ship-shock trials occurred
Figure 3.	Survey boundaries for the "Inshore Area"
Figure 4.	General bathymetric features of the study region, showing the 200, 500, 1000, 2000, and 3000 meter contours
Figure 5.	Spatial plot of relative effort (kilometers surveyed) within the SWFSC study area during 1993-1994
Figure 6.	Spatial plot of relative group encounter rates (sightings/100 km) within the SWFSC study area during 1993-1994
Figure 7.	Spatial plot of relative animal encounter rates (animals/100 km) within the SWFSC study area during 1993-1994
Figure 8.	Locations of 77 on-effort common dolphin sightings
Figure 9.	Locations of 33 on-effort northern right whale dolphin sightings
Figure 10.	Locations of 40 on-effort Risso's dolphin sightings
Figure 11.	Locations of 28 on-effort Pacific white-sided dolphin sightings
Figure 12.	Locations of 18 on-effort Dall's porpoise sightings
Figure 13.	Locations of all (n=5) killer whale sightings
Figure 14.	Location of one off-effort short-finned pilot whale sighting
Figure 15.	Locations of all (n=7) minke whale sightings 71
Figure 16.	Locations of all (n=31) blue whale sightings
Figure 17.	Locations of all (n=27) fin whale sightings

Figure 18.	Locations of all (n=72) gray whale sightings	74
Figure 19.	Locations of 473 gray whale sightings recorded during Minerals and Management Service (MMS) and Southwest Fisheries Science Center (SWFSC) surveys conducted during the periods 1975-1983, and 1991-1994, respectively.	75
Figure 20.	Locations of all (n=4) Baird's beaked whale sightings	76
Figure 21.	Location of one on-effort pygmy sperm whale sighting	77
Figure 22.	Locations of all (n=12) sperm whale sightings	78
Figure 23.	Locations of all (n=14) Cuvier's beaked whale sightings	79
Figure 24.	Locations of all (n=2) mesoplodont beaked whale sightings	80
Figure 25.	Locations of all (n=15) northern elephant seal sightings	81
Figure 26.	Locations of all (n=4) harbor seal sightings	82
Figure 27.	Locations of all on-effort (n=400) California sea lion sightings	83
Figure 28.	Locations of all on-effort (n=7) unidentified pinniped sightings (O=unidentified pinniped, D=unidentfied seal)	84
Figure 29.	Locations of all on-effort (n=12) unidentified dolphin sightings (○=unidentified whitebelly dolphin, ◇=unidentified delphinid, □=unidentified small delphinid, △=unidentified small delphinid or porpoise)	85
Figure 30.	Locations of all on-effort (n=12) unidentified whale sightings (○=unidentified whale, ◇=unidentified small whale, □= unidentified large whale, v=unidentified ziphiid)	86
Figure 31.	Locations of all on-effort (n=4) unidentified marine mammal sightings	87
Figure 32.	Location of one on-effort striped dolphin sighting	88
Figure 33.	Locations of all (n=11) bottlenose dolphin sightings	89
Figure 34.	Locations of all (n=2) humpback whale sightings	90

REPORT OF 1993-1994 MARINE MAMMAL AERIAL SURVEYS CONDUCTED WITHIN THE U.S. NAVY OUTER SEA TEST RANGE OFF SOUTHERN CALIFORNIA

James V. Carretta Karin A. Forney Jay Barlow Southwest Fisheries Science Center National Marine Fisheries Service P.O. Box 271, La Jolla, CA 92038

ABSTRACT

Aerial line-transect surveys were conducted during 1993-1994 to determine the relative spatial and seasonal distribution and abundance of marine mammals within a portion of the U.S. Navy Outer Sea Test Range, west of San Nicolas Island, California. A total of 13,734 km were surveyed within a 10,173 km² study area during a 17-month period, resulting in 462 on-effort sightings of 18 marine mammal species. Of 462 on-effort sightings, 89% were represented by 10 species or species groups: California sea lion, Zalophus californianus (237 on-effort sightings, 51% of all on-effort sightings); common dolphin, genus Delphinus (54, 12%); northern right whale dolphin, Lissodelphis borealis (26, 6%); Risso's dolphin, Grampus griseus (24, 5%); Pacific white-sided dolphin, Lagenorhynchus obliquidens (17, 4%); northern elephant seal, Mirounga angustirostris (13, 3%); fin whale, Balaenoptera physalus (11, 2%); all beaked whales (11, 2%); Dall's porpoise, Phocoenoides dalli (10, 2%); and blue whale, Balaenoptera musculus (8, 2%). Blue whales were encountered only in summer, while fin whales were present in every season. Gray whales were rarely encountered seaward of the Channel Islands. Numerically, common dolphins (26.45 animals/100 km) and northern right whale dolphins (26.24 animals/100 km) were the most abundant species, although northern right whale dolphins were absent from the study area in summer and fall. Seasonal encounter rates for all species combined were highest in summer (4.93 sightings/100 km), and lowest in fall (1.98 sightings/100 km). Group encounter rates (# sightings/100 km) and animal encounter rates (# animals/100 km) were highest in the eastern part of the study area, near the Santa Rosa-Cortes Ridge. The lowest group and animal encounter rates were found in the southwest portion of the study area, near the Patton Ridge and Patton Escarpment. Group encounter rates during calm sea states (4.81 sightings/100km, Beaufort 0-2) were nearly double that of rough sea states (2.51 sightings/100 km, Beaufort 3-4).

INTRODUCTION

In 1994, the U.S. Navy conducted two ship-shock trials utilizing 4,536 kg (10,000 lb) charges, detonated at sites within the Outer Sea Test Range (OSTR), approximately 167 km (90 nmi) southwest of San Nicolas Island, California. The trials were conducted on the Aegis-class destroyer U.S.S. John Paul Jones to test the structural integrity of the ship's hull, as well as electronic and fixed-structure systems. In order to minimize potential impact to marine mammals, the U.S. Navy requested information on their spatial and temporal distribution within a portion

of the OSTR prior to the shock trials, so that trials could be conducted in those areas with the fewest marine mammals. Aerial surveys were conducted by the Southwest Fisheries Science Center (SWFSC) to meet this goal.

The aerial survey data collected during 1993-1994 were used by the SWFSC to recommend suitable shock trial sites to the U.S. Navy. Prior to the scheduled shock trials, a lawsuit was filed by the *Natural Resources Defense Council* (NRDC), challenging the SWFSC's choice of recommended shock trial sites. A U.S. District Court ruling and subsequent legal agreement resulted in the shock-trial sites being moved approximately 120 km (65 nmi) southwest of the SWFSC study area. The new shock-trial sites were then surveyed in April and May of 1994 prior to completion of the shock trials. It is not the intention of this report to review the legal processes or opinions which resulted in the movement of trial sites, but merely to report the marine mammal sighting data collected during aerial surveys. In addition to completing pre-trial surveys for the U.S. Navy, the SWFSC also placed marine mammal observers on board the U.S.S. John Paul Jones and in survey aircraft during the actual shock trial events to ensure that no marine mammals were within a 2 nmi radius of the vessel. A separate report detailing activities on the days of the shock trials and marine mammal mitigation efforts has been presented to the National Marine Fisheries Service by the U.S. Navy (Department of the Navy 1994).

MATERIALS AND METHODS

Study Areas

Three study areas (plus two analyzed sub-areas within one area) are described in this report. An emphasis is placed on the SWFSC study area and its two stratified sub-areas, since a majority of survey effort was conducted there. A brief summary of each area follows:

1. SWFSC study area

The original study area that was surveyed by the SWFSC from January 1993 through May 1994 comprises $10,173 \text{ km}^2$. Twenty-nine transects, totalling 2,345 km and ranging in length from 15 to 126 km were spaced 9 km apart to provide uniform coverage of the area (Figure 1). An attempt was made to survey the complete transect grid at least once each month. Frequently poor weather conditions in the study area prevented this from being accomplished. Additionally, military range operations within the OSTR eliminated approximately one quarter of all potential survey dates.

SWFSC Area "A"

This sub-area of the SWFSC study area covers $7,588 \text{ km}^2$ (Figure 2). Area A was eliminated from consideration as a ship-shock trial site based on its consistently higher animal encounter rates and group encounter rates of marine mammals.

SWFSC Area "B", recommended shock trial area

This other sub-area of the SWFSC study area covers $2,585 \text{ km}^2$ (Figure 2). Area B was recommended by the SWFSC to the Navy as a site suitable for shock trials, based on data collected through May of 1994¹. Area B was chosen as the most suitable shock trial location based on overall lower animal and group encounter rates.

2. Area "C"

<u>This 1,746 km²</u> area is located approximately 120 km southwest of Area B (Figure 2). Area C is where ship-shock trials were eventually conducted. Surveys were flown here only in April and May of 1994, totalling 1,344 km of effort. Sixteen transects, totalling 525 km, and ranging in length from 8 to 58 km were spaced 9 km apart to provide uniform coverage of this area.

3. "Inshore Area"

This $33,403 \text{ km}^2$ area lies mostly east of the OSTR and was surveyed on an opportunistic basis when transiting to and from the SWFSC study area or, when poor weather conditions offshore precluded effective surveying within the SWFSC study area (Figure 3). Surveys here were done opportunistically, not along fixed transect lines.

Scientific Personnel

Wes Armstrong	NMFS/SWFSC	Marine Mammal Observer
Dr. Jay Barlow	NMFS/SWFSC	Program Leader/Marine Mammal Observer
Scott Benson	NMFS/SWFSC	Marine Mammal Observer
James Carretta	NMFS/SWFSC	Survey Coordinator/Observer
Susan Chivers	NMFS/SWFSC	Marine Mammal Observer
Terry Farley	NMFS/SWFSC	Marine Mammal Observer
Daniel Fink	NMFS/SWFSC	Data Recorder
Karin Forney	NMFS/SWFSC	Survey Coordinator/Observer
James Gilpatrick	NMFS/SWFSC	Marine Mammal Observer/Photogrammetrist
Fred Julian	NMFS/SWFSC	Data Recorder
Carrie LeDuc	NMFS/SWFSC	Marine Mammal Observer
Tim Lee	NMFS/SWFSC	Marine Mammal Observer
Mark Lowry	NMFS/SWFSC	Marine Mammal Observer
Morgan Lynn	NMFS/SWFSC	Marine Mammal Observer/Photogrammetrist
Joyce Sisson	NMFS/SWFSC	Marine Mammal Observer
Robin Westlake	NMFS/SWFSC	Marine Mammal Observer/Photogrammetrist

All marine mammal observers, with the exception of one, had prior experience with

¹ - In the Department of the Navy's final report to NMFS (Department of the Navy 1994), the SWFSC recommended shock trial areas shown differ from those presented here. The initially recommended areas were based on aerial survey data collected for the period January through June of 1993. Additional data were collected through May of 1994, which were used to update recommended trial areas. These recommended areas collectively represent "Area B".

identifying marine mammals in the field, either from aerial platforms, shipboard platforms, or both. The one observer without prior experience was limited to data recording duties during a period of marine mammal identification training.

Pilots

John Drust	Aspen Helicopters, Oxnard, CA.
Barry Hansen	Aspen Helicopters, Oxnard, CA.
Rick Throckmorton	Aspen Helicopters, Oxnard, CA.

Aircraft

Two models of *Partenavia* aircraft were utilized for the surveys. A twin-engine, turboprop *Partenavia Spartacus* was used on most surveys. When the *Spartacus* aircraft was not available, a twin-engine *Partenavia* P-68 was used. Both aircraft models were fitted with left and right side bubble windows just forward of the wings. The bubble windows provided observers with unobstructed viewing from the horizon (0° declination angle) to the trackline directly beneath the aircraft (90°), and approximately 10° of visual overlap directly below the aircraft. The bubble windows allowed observers to search ahead of and behind the aircraft as well. A rectangular viewing hole (30 x 50 cm) in the bottom of the *Spartacus* aircraft was fitted with optical glass to allow a third observer to monitor the trackline directly below the aircraft. A similar belly window in the P-68 model (25x30 cm) was covered with plexiglass. The aircraft maintained an altitude of approximately 213 m (700 ft) and airspeeds of 167-185 km/hr (90-100 knots) while surveying. The survey altitude was occasionally reduced to as low as 152 m (500 ft) due to low clouds.

Duty Stations

The aerial survey team consisted of three observers, one data recorder, and the pilot. Three observers rotated through three duty stations (left bubble window, right bubble window, and belly window) approximately every 45 minutes. The data recorder remained in his or her position for the duration of each flight. The left and right bubble windows were designated as "primary observer" stations, and the belly window observer was designated as a "secondary observer."

Primary Observers

The left and right observers searched with unaided eye through bubble windows on each side of the aircraft. To increase sighting efficiency near the trackline, primary observers limited their search for marine mammals out to a declination angle of 12° (1004 m perpendicular distance from the trackline). When marine mammals were sighted, the observer waited until the animals were perpendicular to the aircraft, and then measured a declination angle to the center of the group. The pilot was then instructed to direct the aircraft towards the group, so that observers could make species identifications and school size estimates.

Secondary Observer

A third observer searched with unaided eye through a rectangular belly window located in the tail section of the aircraft. This observer had a clear view of the trackline directly below and slightly forward of the aircraft out to approximately 65° declination angle (100 meters perpendicular distance) on each side of the trackline. The role of the secondary observer was to sight marine mammals near the trackline that were missed by primary observers. The secondary observer waited approximately 5-10 seconds to announce the presence of marine mammals when sighted, to ensure that they were well out of the view of the primary observers. These data are used to calculate the fraction of sightings missed by both observer teams. Bias caused by the fraction of sightings missed on a previous aerial survey is discussed by Forney *et al.* (1995) for various species groups and school sizes.

Data Recorder

The data recorder entered and updated all effort, environmental, and sighting data into a laptop computer. The types of effort, environmental, and sighting data recorded during the surveys were summarized in Carretta and Forney (1993). The data recorder terminated effort when the aircraft diverted from the transect line and ensured that observers were prepared to search before resuming effort. The data recorder did not actively search for marine mammals, and any sightings that were detected by the recorder were classified as "off-effort" sightings if they were not detected by primary or secondary observers (see explanation of on- and off-effort classifications in "Data Collection Procedures" section).

Data Collection Procedures

Aerial surveys were conducted during Beaufort sea states 0-4, following the sea state definitions from Bowditch (1966) (Table 1). Survey effort was normally terminated when conditions reached Beaufort 5, although 408 km of Beaufort 5 data were collected. These Beaufort 5 data were not used in the calculations of marine mammal group or animal encounter rates. Surveys within the OSTR were restricted primarily to weekends and occasional Fridays due to scheduled military operations the remainder of the week, although not all weekends were free of military operations.

A Toshiba² T-1000 or Sager² NP-500 laptop computer was used to record all effort and sighting data. The computer was linked to the aircraft's LORAN navigation system via a 25-to-9 pin serial port connector to obtain continuous location data. An event-driven, Pascal program was used to record effort and sighting data. The program captured current LORAN position data every minute and again when any survey events were recorded. These events included changes in altitude, airspeed, environmental conditions, observer positions, comments, and sighting information.

The left and right primary observers used Suunto² optical clinometers to measure the declination angle from the aircraft to sighted animals. Declination angles were used to calculate the perpendicular distance of sighted animals from the trackline. Due to space limitation, the secondary observer used hatch marks on the belly window to measure declination angles to sightings. These hatch marks were calibrated using a clinometer prior to the surveys. A table showing perpendicular distances from the trackline relative to declination angle is given in Appendix 1 of Carretta and Forney (1993).

Sightings were recorded as either "on-effort" or "off-effort". "On-effort" sightings were those made by primary and secondary observers while the aircraft was flying along a predetermined transect line and all three observers were actively searching for marine mammals. Sightings were categorized as "off-effort" in the following four cases:

- 1. Sightings made while the three observers were not actively searching along the transect line (i.e. when in transit).
- 2. Sightings made by the pilot or the data recorder, but missed by the primary and secondary observers.
- 3. Additional sightings made while circling to re-locate an on-effort sighting.
- 4. Sightings made beyond 12° declination angle (1004 m perpendicular distance).

Off-effort sightings are not used in the calculation of encounter rates presented in this report.

When marine mammals were sighted, the observer who first detected the animals announced their presence to the data recorder, who terminated effort and entered the sighting information into the computer. At this time, the belly window observer released a fluorescein dye marker from the aircraft to aid the pilot in relocating the marine mammals. After the declination angle was measured, the pilot was then instructed to direct the aircraft back to the location of the marine mammals. The computer program also provided dynamic distance and bearing information to the location where animals were first sighted.

During a sighting, the aircraft typically made several passes over the animals. Observers made species identifications at this time, and took notes on the features they observed. After a consensus was reached on the species identification, the pilot continued to circle the aircraft around the area so that observers could obtain school size estimates. Observers made three estimates: a best, high, and low estimate of the number of animals thought to be present. The observers entered their estimates into personal notebooks without discussing them, to avoid biasing or influencing each other. These estimates were entered into the data files at the end of the day by the survey leader.

²- Reference to trade names does not imply endorsement by the NMFS.

Occasionally, it was not possible to identify marine mammals to species. In these cases, the animals were assigned to various unidentified categories (i.e. "unidentified dolphin" or "unidentified whale"). In some cases, the observer could narrow the identification down to one of two species, for example, "common dolphin" (species code DD) or "Pacific white-sided dolphin" (species code LO). In this case, the codes for both species were combined: (DDLO). Two species of common dolphin (*Delphinus delphis* and *Delphinus capensis*) could not be distinguished by aerial observers and were both assigned the species code DD.

Aerial photogrammetry was used to obtain length data for cetaceans, and also to verify some species identifications. A 127 mm format, KA-45 military reconnaissance camera was mounted in the belly window of the plane. The camera has a 152 mm focal length lens, and a forward motion compensator to eliminate blurring by forward aircraft motion. Photographs were taken on Kodak 3404 Plus-X black-and-white film, which was exposed through a Wratten 9 filter to increase contrast between subject and water. A second Toshiba T-1000 laptop computer was linked to the aircraft's radar altimeter to obtain accurate and continuous altitude data during photographic operations. Photographs obtained during the surveys will be analyzed at a later date, and used to distinguish short-beaked and long-beaked common dolphins (*Delphinus delphis* and *Delphinus capensis*), which have recently been recognized as two distinct species based on genetic and morphological evidence (Rosel et al. 1994, Heyning and Perrin 1994).

Data Presentation

Bathymetry contours (200, 500, 1,000, 2,000, and 3,000 meters) and the major submarine features (Patton Escarpment, Patton Ridge, Santa Rosa-Cortes Ridge, and San Juan Seamount) are shown for the Southern California Bight (SCB) in Figure 4. Bathymetric contours also appear in all subsequent species plots.

Seasonal data presented in this report are based on the following monthly divisions: winter (December - February), spring (March - May), summer (June - August), and fall (September - November).

Two types of encounter rates are presented. Group encounter rates represent the number of on-effort marine mammal schools or groups detected per 100 km of survey effort. Animal encounter rates refer to the number of individual animals detected per 100 km of survey effort. Only on-effort sightings are used in the calculation of both encounter rate types.

Species plots are not consistent with regard to effort-type. For the frequently encountered species (such as California sea lion and common dolphins), only on-effort sightings are plotted. Plotting of numerous off-effort sightings of these species would have confounded effort-based distributional patterns due to the large number off-effort sightings recorded during transit flights to and from the study areas, and between transect lines. Endangered species (such as blue, fin, and sperm whales), and rarely encountered species (such as Cuvier's beaked whale and pygmy sperm whale) are represented by *both* on and off-effort sightings in their respective plots.

RESULTS

Effort

Surveys were cancelled and/or aborted on approximately half of all available weekends due to poor weather. Additionally, approximately a quarter of all weekends were unavailable for surveying due to military operations. Surveys effort was conducted on a total of 58 dates. Of these 58 dates, there were 45 in which survey effort was conducted within the SWFSC study area. A summary of survey dates and kilometers surveyed for each date is given in Table 2.

A total of 17,650 km were searched within the entire Southern California Bight (SCB). Within the SWFSC study area, 13,734 km were surveyed from January 1993 through May 1994. The relative spatial survey effort within the SWFSC study area is shown in Figure 5. Survey effort was most concentrated in the southeast portion of the study area. Winter and spring survey effort was double that of summer and fall because of the greater number of winter and spring survey dates available during the 17-month study. The total number of kilometers surveyed within each area, season, and sea state category are given in Table 3.

Spatial and Temporal Overview

Group and animal encounter rates are summarized by area in Table 3. The highest group encounter rate (8.50 sightings/100 km) occurred in the Inshore Area, the lowest in Area C (0.89 sightings/100 km). Animal encounter rates were highest in the Inshore Area (542 animals/100 km) and lowest within Area B (37.2 animals/100 km). Area B is that which the SWFSC recommended for shock trials.

Relative spatial group encounter rates within the SWFSC study area are shown in Figure 6. Within the SWFSC study area, group encounter rates were highest in the northeastern extreme near the Santa Rosa-Cortes Ridge (corresponding to Area A). Generally, group encounter rates were higher in the northern half of the SWFSC study area. The lowest group encounter rates were found in the southwest quarter of the SWFSC area, which corresponds to Area B. Group encounter rates in Area A (3.54 sightings/100 km) were nearly double that of Area B (1.88 sightings/100 km). Seasonally, the overall SWFSC area group encounter rate was highest in summer (4.93 sightings/100 km), and lowest in fall (1.98 sightings/100 km).

Relative spatial animal encounter rates within the SWFSC study area are shown in Figure 7. Animal encounter rates within the SWFSC study area were also highest near the northeastern extreme, with a second area of relatively high animal encounter rates east of the San Juan Seamount. Areas of relatively low animal encounter rates were found near the center of the SWFSC study area, over the Patton Ridge. The animal encounter rate in Area A (169.3 animals/100 km) was approximately 4.5 times greater than in Area B (37.2 animals/100 km). Seasonally, animal encounter rates were highest within the SWFSC study area in spring (189.4 animals/100 km), and lowest in winter (78.0 animals/100 km).

Effects of Beaufort Sea State

Group encounter rates within the SWFSC study area were approximately twice as high (4.81 sightings/100 km) in calm sea states (Beaufort 0-2) than in rough sea states (Beaufort 3-4, 2.51 sightings/100 km). Previous studies have shown that sighting rates decline with an increase in Beaufort sea state (Holt and Cologne 1987, Forney et al. 1991). Additionally, it has been shown that apparent densities of harbor porpoise are reduced with increasing cloud cover, due to decreased light penetration of the sea-surface (Barlow et al. 1988, Forney et al. 1991). This is intuitively obvious, as marine mammals are more difficult to detect in poor conditions. The sea state effect on encounter rates is confounded within the SWFSC study area due to the large weather gradient found there. Sea state (and marine fog) conditions were consistently worse in the western half of the study area, while group encounter rates also decreased with increasing distance from shore. Although other researchers have also shown that cetaceans are more abundant in the productive coastal waters than in the offshore waters of the California Current (Smith et al. 1986), it is unknown how much the observed differences in inshore/offshore group encounter rates are based on real marine mammal abundance or reduced observer effectiveness in higher sea states. This is not easily determined due to geographic biases in both parameters. It may be possible to establish group encounter rate correction factors for differing Beaufort sea states (as well as other environmental variables such as cloud cover) if the analysis is confined to an area small enough to eliminate the effects of spatial heterogeneity in weather and marine mammal abundance.

Species Accounts

Within the SWFSC study area, 18 marine mammal species were identified, which included 15 cetacean and 3 pinniped species. Sighting information for these 18 species is summarized in Table 4. Bottlenose dolphins, striped dolphins, and humpback whales were only identified outside of the SWFSC study area.

The highest group encounter rate was found for California sea lions (1.82 sightings/100 km), followed by common dolphins (0.394 sightings/100 km) and northern right whale dolphins (0.189 sightings/100 km). Common dolphins had the highest animal encounter rate (26.45 animals/100 km), followed closely by northern right whale dolphins (26.24 animals/100 km). Northern right whale dolphin had the largest mean school size (138.8 animals, range= 2-2,263), which was more than double than that of the common dolphin (67.3 animals, range= 1-2,000). California sea lions were the most frequently detected marine mammal (1.82 sightings/100 km), although their mean school size was small (1.4 animals, range= 1-16). Fin whales were the most commonly detected large whale and were detected during all seasons (0.081 sightings/100 km). As a group, the beaked whales (Cuvier's, Baird's, *Mesoplodon* spp., and unidentified ziphiids) were seen just as frequently (0.081 sightings/100 km) as fin whales. Blue whales were the next most commonly encountered whale (0.059 sightings/100 km), with all of the sightings occurring in summer.

Detailed sighting information for each species seen within the SWFSC study area is given

in the following sections. Species sighting data are summarized by season and school size in Tables 5-6. A summary of the species codes used during the surveys is given in Table 7, and a summary of all on and off-effort coded sightings is given in Table 8. Abundance estimates provided in the following species summaries are for California waters only, unless otherwise specified. Estimates are based on 1991-1992 winter and spring aerial surveys (Carretta and Forney 1993, Forney *et al.* 1995) and a 1991 summer and fall ship survey (Hill and Barlow 1992, Barlow 1995), unless noted otherwise. All associated confidence intervals (C.I.) are log-normal and are given at the 95% level. Mean school sizes and ranges are given for on-effort sightings within the SWFSC study area only.

Dolphins and Porpoises

Common dolphins (*Delphinus delphis* and *Delphinus capensis*): Common dolphins were the most frequently encountered cetacean (54 on-effort sightings, 0.394 sightings/100 km) within the SWFSC study area. Seasonally, common dolphins were encountered much more frequently in summer and fall (0.734 sightings/100 km), than in winter and spring (0.227 sightings/100 km). The highest group encounter rate occurred in summer (1.19 sightings/100 km), and the lowest (0.17 sightings/100 km) in winter. The locations of all on-effort common dolphin sightings are shown in Figure 8.

Common dolphins are the most abundant cetacean in California waters, occurring in large schools throughout the SCB (Forney et al. 1995, Barlow 1995). Two species of common dolphins, the "short-beaked" Delphinus delphis, and "long-beaked" Delphinus capensis, occur within the SCB (Heyning and Perrin 1994, Rosel et al. 1994). Current abundance estimates based on aerial surveys of common dolphins for the winter and spring period are 305,694 (C.I.= 159,864-584,552, Forney et al. 1995). Because short-beaked and long-beaked common dolphins are indistinguishable from the air, this abundance estimate combines of both forms. Summer and fall abundance estimates (Barlow 1995) are 225,821 short-beaked (C.I. = 132,139-385,918) and 9,472 long-beaked common dolphin (C.I. = 2,817-31,842), based on a ship survey. An additional 10,286 unclassified common dolphin (C.I.= 2,539-41,664) were estimated, bringing the total summer and fall common dolphin estimate to 245,579 animals (Barlow 1995). During this summer and fall ship survey, fourteen sightings of long-beaked common dolphin were recorded (Hill and Barlow 1992). Twelve of the 14 long-beaked sightings were clustered around the northern Channel Islands of San Miguel, Santa Rosa, and Santa Cruz (the remaining two were within 10 nmi of the mainland). Sightings of short-beaked common dolphin were also found near the northern Channel Islands, but a majority of the 155 short-beaked sightings reported were spread far offshore to approximately 300 nmi, and north to latitude 39^o N. This distribution pattern is consistent with the known "nearshore" habits of long-beaked common dolphin (Heyning and Perrin 1994). Previous work has suggested evidence of mixing of "nearshore" and "pelagic" forms over the Santa Rosa-Cortes Ridge and Patton Escarpment, and that west of the Patton Escarpment, only the pelagic form is found (Dohl et al. 1986). Although aerial observers are not able to differentiate the two species of common dolphin, aerial photogrammetry has allowed for the differentiation of common dolphin stocks within the eastern tropical Pacific (Perryman and Lynn 1993). Aerial photographs taken during the present study will be analyzed for this purpose, and this information will be presented in a later report.

Northern right whale dolphin (*Lissodelphis borealis*): Within the SWFSC study area, twenty six on-effort sightings of northern right whale dolphin were recorded in winter and spring. No northern right whale dolphin were seen during summer, and only one on-effort group of two animals was detected in the fall, just outside of the SWFSC area. Group encounter rates for the winter and spring were similar (0.30 and 0.26 sightings/100 km, respectively). Northern right whale dolphin occurred in the largest schools, averaging 138.8 animals (range 2-2,500). The average school size increased from 13.9 animals (14 sightings) in winter to 284.3 animals (12 sightings) in spring, possibly in response to warming water temperatures and as a precedent to migration out of the region. Additional analyses of northern right whale dolphin school sizes relative to season and water temperature may reveal if there is a true seasonal component. The locations of all on-effort northern right whale dolphin sightings are shown in Figure 9.

The observed sighting patterns during this study are consistent with previous observations that indicate that northern right whale dolphins are a winter/spring visitor to the shelf waters of the SCB, when sea-surface temperatures are generally coldest, and less abundant during seasonal warm-water periods (Leatherwood and Walker 1979, Dohl *et al.* 1980, Carretta and Forney 1993). The observed seasonal distributions are reflected in recent abundance estimates. Winter and spring abundance estimates are 21,332 northern right whale dolphin (C.I.= 9,548-47,658), while summer and fall estimates are lower; 9,342 (C.I. = 3,322-26,272); (Forney *et al.* 1995, and Barlow 1995, repectively).

Risso's dolphin (*Grampus griseus***):** Twenty four on-effort sightings of Risso's dolphins were recorded within the SWFSC study area, Risso's dolphin were encountered within the SWFSC study area in all seasons except fall, and were the third most encountered cetacean (0.173 sightings/100 km). The mean school size ranked third among all species at 34.3 animals (range= 3-238). Group encounter rates were highest in winter (0.30 sightings/100 km) and lowest in summer (0.10 sightings/100 km). The locations of all on-effort Risso's dolphin sightings are shown in Figure 10.

Risso's dolphin are commonly encountered near the Channel Islands and their abundance is apparently linked to warm-water periods (Leatherwood *et al.* 1980). Abundance estimates for the winter and spring (Forney *et al.* 1995) are 32,376 (C.I.= 13,812-75,891), and 8,496 (C.I. = 3,890-18,555) for the summer and fall (Barlow 1995). This difference in seasonal estimates may be due to movement of animals from Oregon and Washington into California waters in winter (Green *et al.* 1992, Forney *et al.* 1995).

Pacific white-sided dolphin (*Lagenorhynchus obliquidens*): Pacific white-sided dolphin were the fourth most commonly encountered cetacean species (0.124 sightings/100 km) within the SWFSC study area, and were seen in all seasons. The highest group encounter rate (0.30 sightings/100 km) occurred in summer, and the lowest group encounter rate (0.04 sightings/100 km) occurred in the fall. The mean school size was 24.2 animals (range= 2-163), which ranked fourth among all species. The locations of all on-effort Pacific white-sided dolphin sightings are

shown in Figure 11.

Seasonal movements of Pacific white-sided dolphin along the U.S. west coast have been described by Dohl *et al.* (1980), Leatherwood *et al.* (1984), Green *et al.* (1992), and Carretta and Forney (1993). The observed seasonal trends within the SCB indicate that Pacific white-sided dolphin increase in abundance with decreasing water temperatures. Recently published abundance estimates of 121,693 animals (C.I. = 51,041-290,144) for the winter and spring (Forney *et al.* 1995) and 12,310 animals (C.I. = 4,590-33,010) for the summer and fall (Barlow 1995) support these observations.

Dall's porpoise (*Phocoenoides dalli*): Dall's porpoise were encountered within the SWFSC study area a total of 10 times and in every season except summer. The highest group encounter rate (0.10 sightings/100 km) occurred in spring. Most sightings occurred along the western edge of the Santa Rosa-Cortes Ridge, near the 1,000 m isobath. The mean school size for all groups was 4.0 animals (range= 1-8). The locations of all on-effort Dall's porpoise sightings are shown in Figure 12.

Dall's porpoise are infrequently seen in the SCB during warm-water periods (Dohl *et al.* 1980), while they can be found as far south as Baja California during cold-water periods (Leatherwood *et al.* 1972). During winter and spring aerial surveys in 1991 and 1992, Dall's porpoise was the most commonly sighted cetacean (Carretta and Forney 1993). Recent seasonal abundance estimates of Dall's porpoise are 8,460 (C.I.=5,320-13,453) for the winter and spring (Forney *et al.* 1995) and 78,422 (C.I. = 40,026-153,649) for the summer and fall (Barlow 1995). Although these two abundance estimates appear to contradict the observed seasonal distributions for this species, Forney *et al.* (1995) stated that the winter and spring aerial estimate of Dall's porpoise is likely to be biased downward considerably. This is due to the large fraction of time that Dall's porpoise spend diving, thus increasing the chances that an observer in a fast-moving aircraft would fail to detect the animals. Regardless of the seasonal disparity in abundance estimates, there were marked distributional differences for this species between the two studies. The summer and fall survey (Hill and Barlow 1992) showed that all 128 sightings of Dall's porpoise occurred north of Pt. Conception, while the winter and spring distribution was fairly uniform from the SCB north to the California/Oregon border (Carretta and Forney 1993).

Killer whale (Orcinus orca): Three on-effort sightings of killer whales were recorded within the SWFSC study area, two of which occurred on consecutive days 32 miles apart and may have represented some of the same animals. The mean school size for the three on-effort sightings was 2.3 animals (range= 1-4). Two off-effort sightings were recorded outside of the SWFSC study area, including a group of 6 to 8 animals just south of San Miguel Island in March of 1994. The locations of *all* (on and off-effort) killer whale sightings are shown in Figure 13.

Killer whale sightings in California waters are relatively rare and no resident populations have been identified (Forney 1994). Current abundance estimates are 65 animals (C.I. = 19-220) for the winter and spring (Forney *et al.* 1995) and 307 animals (C.I. = 48-1,947) for the summer and fall (Barlow 1995).

Short-finned pilot whale (*Globicephala macrorhynchus*): One off-effort sighting of nine pilot whales was recorded within the SWFSC study area in July of 1993 (Figure 14). Pilot whales were once common residents of the SCB, but have been infrequently sighted since the 1982-83 El Niño (Shane 1994). Twenty-five animals were observed and photographed off central California in the fall of 1991 (Jones and Szczepaniak 1992), and one sighting of four animals was reported in the SCB in 1992 (Carretta and Forney 1993). No pilot whales were sighted during an extensive ship survey in 1991 of California waters out to 555 km (300 nmi) (Barlow 1995). Five sightings of pilot whales were recorded off of central California during a 1993 ship survey (Mangels and Gerrodette 1994).

Baleen whales

Minke whale (*Balaenoptera acutorostrata*): Two minke whale sightings (one on effort) were recorded within the SWFSC study area. An additional five sightings were recorded in the Inshore Area. Six of the seven minke whale sightings contained single animals; the remaining sighting contained two. The locations of *all* (on and off effort) minke whale sightings are shown in Figure 15. Within the SCB, minke whales are usually seen over continental shelf waters, and are reported to be most common around the Channel Islands (Leatherwood *et al.* 1982). Current abundance estimates of minke whales are 73 (C.I.= 24-223) for the winter and spring (Forney *et al.* 1995) and 526 (C.I.= 106-2,596) for the summer and fall (Barlow 1995).

Blue whale (*Balaenoptera musculus*): Thirty one total sightings of blue whales were recorded, although only eight were on-effort sightings within the SWFSC area. All sightings within the SWFSC area occurred in summer, and most occurred along the Santa Rosa-Cortes Ridge. The mean school size for the eight on-effort sightings was 1.5 animals (range= 1-3). The location and timing of blue whale sightings in southern California waters suggests that they may be encountered any time of the year; however, they appear rare in winter and spring and become abundant in the study area and in surrounding waters in the summer and fall. The locations of all thirty-one blue whale sightings are shown in Figure 16.

In the SCB, blue whales are reported to be common from July through October, west of the Channel Islands along the Patton Escarpment (Leatherwood *et al.* 1982). North-to-south seasonal movements of blue whales have been documented with photo-identification of individuals. Whales that have been photographed off of Baja California in March and April have been resighted off central California near Monterey Bay and the Gulf of the Farallones in September and October (Calambokidis *et al.* 1990). Concentrations of up to 40 whales occur in September near San Miguel and Santa Rosa Islands, where the whales have been seen feeding on large krill swarms (NMFS, unpublished data). An abundance estimate of 2,250 blue whales (C.I.= 1,093-4,632) in California waters was recently reported by Barlow (1995), based on a 1991 summer and fall ship survey and a study area that extended out 555 km (300 nmi) from the coast. During 1991-1992 winter and spring aerial surveys, two blue whale sightings were recorded off southern California in February and March of 1992, during which time waters were warmer than normal due to an El Niño event (Carretta and Forney 1993).

Fin whale (Balaenoptera physalus): The fin whale was the most commonly encountered whale species within the SWFSC study area (0.081 sightings/100 km). Fin whales were encountered in every season, and most frequently in fall. Eleven on-effort sightings were recorded within the SWFSC study area. The mean school size for all seasons was 1.9 animals (range= 1-4). One off-effort sighting of at least 8 whales was recorded in the SWFSC study area. All of the sightings were recorded east of the Patton Escarpment, over the continental shelf. The locations of all (on and off-effort) fin whale sightings are shown in Figure 17.

Within the range of central California south to Baja California, fin whales are most often found just outside (west) of the Channel Islands (Leatherwood *et al.* 1982). The year-round presence of fin whales in California suggests the possibility of a resident population (Barlow 1994). A total of 935 fin whales (C.I.= 299-2,925) were estimated during a 1991 summer and fall ship survey (Barlow 1995).

Gray whale (*Eschrichtius robustus*): Two gray whale sightings were recorded within the SWFSC study area (the one on-effort sighting was a cow-calf pair). The locations of *all* (on-and off-effort) gray whale sightings during this study are shown in Figure 18. A review of gray whale sightings recorded during Minerals Management Service (MMS) surveys from 1975-1983 and NMFS surveys from 1991-1994 shows that a majority of the gray whales migrate east of the SWFSC study area (Minerals Management Service 1993, NMFS unpublished data). A combined total of 473 MMS and NMFS gray whale sightings are shown in Figure 19, reflecting survey effort that extended well west of the Channel Islands. During winter and spring 1991-1992 aerial surveys, 29 sightings of gray whales were reported; none of these were recorded within the SWFSC study area (Carretta and Forney 1993).

The gray whale is the most common whale species found in California coastal waters during the winter and spring. The most recently published population estimate for the California gray whale is 20,869 (C.I.= 19,200 - 22,700), based on 1987-1988 counts of gray whales passing the Monterey area (Buckland *et al.* 1993). The population has reached pre-whaling population levels, and therefore recently has been taken off the endangered species list. Gray whales migrate very near to the coast, and from northwest to southeast along the axis of the Channel Islands, usually avoiding very deep water. Some gray whales use a migratory route west of the Channel Islands, although a majority of the whales pass inshore of the islands (Rice 1965, Leatherwood 1974).

Toothed Whales

Baird's beaked whale (*Berardius bairdii*): Four sightings (two on effort) of Baird's beaked whale were recorded within the SWFSC area, near the Patton Escarpment and Patton Ridge. Two of the sightings occurred in May, and two in July. The locations of all four Baird's beaked whale sightings are shown in Figure 20.

Baird's beaked whale is infrequently encountered along the continental slope in California waters. The distribution of Baird's beaked whale in Japanese waters has been described as being

limited to the continental slope at a depth of 1,000 to 3,000 meters (Kasuya 1986). Sightings along the U.S. west coast appear to follow the same pattern. Green *et al.* (1992) reported five sightings of Baird's beaked whale off the coast of Oregon, four of which were in close proximity to the 2,000 m contour, and the fifth occurring in deeper water westward. Three sightings of Baird's beaked whale were reported during a 1991 ship survey (Hill and Barlow 1992); all three sightings occurred in August, in water depths 1,000 m or greater. Dohl *et al.* (1983) found this species to be most abundant off California from June through October. No Baird's beaked whales were seen during 1991-1992 aerial surveys in winter and spring (Carretta and Forney 1993). A ship survey in 1993 resulted in five Baird's beaked whale sightings in August, four of which occurred in water deeper than 1,000 m (Mangels and Gerrodette 1994). The only available abundance estimate of Baird's beaked whale in California waters is 38 whales (C.I. = 7-203, Barlow 1995), which is based on one on-effort sighting. This estimate is likely to be negatively biased due to the species' deep-diving habits.

Pygmy sperm whale (Kogia breviceps): One sighting of a single pygmy sperm whale was recorded approximately 89 km (48 nmi) southwest of San Nicolas Island (Figure 21). From a survey aircraft, the pygmy sperm whale can be distinguished from the dwarf sperm whale based on size, if a large animal is encountered. The maximum reported length for *K. breviceps* is 4.28 meters, for a specimen from the Indian Ocean (Chantrapornsyl *et al.* 1991). The animal that was sighted during our surveys was estimated to be approximately 3.6-3.9 meters by one observer (JVC), well above the maximum reported length (2.7 m) for the dwarf sperm whale, *K. simus* (Caldwell and Caldwell 1989). The length estimate was based on the observation that the animal was nearly identical in size to an adult Risso's dolphin (*Grampus griseus*), a species that all observers had frequently seen from the air. Another observer on board the aircraft had seen *K. simus* numerous times from aerial platforms in the eastern tropical Pacific, and concurred that the animal in question was not that species.

Pygmy sperm whales are rarely identified at sea due to their cryptic habits and similarity to the dwarf sperm whale (*Kogia simus*). The only available abundance estimate for pygmy sperm whales in California waters is 870 (C.I.= 220-3,433), based on 2 on-effort sightings during a 1991 ship survey (Barlow 1995). Although both species of *Kogia* occur in California waters and further north, [as evidenced by stranded animals; Hubbs (1951), Roest (1970), Jones (1981), Nagorsen and Stewart (1983) and Eliason and Houck (1986)], only *K. breviceps* has been identified at-sea in California waters despite extensive cetacean surveys by both the SWFSC and other researchers. *K. simus* has however, been commonly identified by SWFSC observers in the eastern tropical Pacific, being sighted 84 times during ship surveys between 1986-1990 (Wade and Gerrodette 1993). By comparison, *K. breviceps* was sighted only four times during the same study, with all four sightings occurring north of 24° N latitude. These data are in agreement with the observed tendency of *K. simus* to occur more frequently in warmer seas (Caldwell and Caldwell 1989), while *K. breviceps* occurs in more temperate waters.

Sperm whale (*Physeter macrocephalus***):** Eleven sightings of sperm whales were recorded in the SWFSC study area, and one (off effort) in Area C. Most of these sightings occurred along the Patton Escarpment near the 2,000-3,000 meter contour. The locations of *all*

(on and off-effort) sperm whale sightings are shown in Figure 22.

Off of southern California, sperm whales may be encountered during any season in offshore waters, most often seaward of the continental shelf. Current abundance estimates of sperm whales in California waters are 892 (C.I.= 176-4,506) for the winter and spring (Forney *et al.* 1995) and 756 (C.I.= 303-1,886) for the summer and fall (Barlow 1995). Sperm whales are deep-divers, reaching depths as great as 2,000 m, and possibly 3,000 m (Rice 1989, Watkins *et al.* 1993). Most deep dives are made by large males (Rice 1989). Watkins *et al.* (1985) reported a maximum dive time of 138 minutes for a group of whales. Lockyer (1977) reported that most dives (77.1%) are less than 500 m, and that 96.7% are less than 30 minutes. Due to the deep-diving habits of this species, Barlow (1994) noted that abundance estimates from aerial surveys are likely to be biased downward by a factor of three to eight.

Cuvier's beaked whale (*Ziphius cavirostris*): Twelve sightings of Cuvier's beaked whale were recorded within the SWFSC study area, and one within Area C. Cuvier's beaked whale was encountered in every season except summer. Eight of the SWFSC study area sightings were on-effort. Two of these eight sightings were recorded during Beaufort 5 conditions, and are therefore not included in calculation of encounter rates. The locations of all on and off effort (n=14) Cuvier's beaked whale sightings are shown in Figure 23.

The general rarity of sightings prevents seasonal movements to be determined within California waters. Leatherwood *et al.* (1982) reported that Cuvier's beaked whale sightings were rare in continental shelf regions of California, even where survey effort had been extensive. Four sightings from the present study occurred over the continental shelf, in waters 500 to 1,000 meters deep, near the Santa Rosa-Cortes Ridge and the Patton Ridge, while the remaining ten sightings occurred in waters greater than 1,000 m deep. An abundance estimate of 1,621 (C.I. = 396-6,637) Cuvier's beaked whales was reported by Barlow (1995). The true number of Cuvier's beaked whales is likely to be much higher, due to the deep-diving habits of the species.

Mesoplodont beaked whales (*Mesoplodon* **spp):** Two sightings of *Mesoplodon* species (one in the SWFSC study area, the other in Area C) were recorded, and the locations are shown in Figure 24. The SWFSC study area sighting contained one animal and the Area C group contained two animals. At least five species of *Mesoplodon* occur off the U.S. west coast (Forney 1994), but the species are difficult to distinguish in the field. The only available population estimate of *Mesoplodon* spp. in California waters is 250 (C.I.= 60-1,040, Barlow 1995). This estimate is also likely to be negatively biased due to the deep-diving habits of the genus. Members of the genus *Mesoplodon* are similar in their sighting characteristics to Cuvier's beaked whale (low, often barely visible blow, and tendency to remain at the surface for brief periods). The infrequency of *Mesoplodon* sightings in comparison with Cuvier's beaked whale during this study may suggest that mesoplodont beaked whales are less numerous within the SCB, or perhaps spend more time at depth than do Cuvier's beaked whale.

Pinnipeds

Northern elephant seal (*Mirounga angustirostris*): Elephant seals were seen in every season within the SWFSC study area. All sightings were of single animals, and the locations of all sightings are shown in Figure 25. The most recent (1991) population estimate for elephant seals along California and Baja California is 127,000 animals (Stewart *et al.* 1994). The largest elephant seal rookeries in southern California occur on San Miguel and San Nicolas Islands, respectively. Elephant seals are difficult to detect from an aircraft because they spend the majority of their time at sea diving. DeLong and Stewart (1991) reported that adult male elephant seals were submerged 86% of the time that they were at sea, reaching depths as great as 1,529 m. Because of this, the group encounter rates presented in this report are likely to be biased downward by a factor of seven or greater.

Harbor seal (*Phoca vitulina***):** Two sightings of single harbor seals were recorded within the SWFSC study area, and these sighting locations are shown in Figure 26. The relative scarcity of harbor seal sightings within the SWFSC study area is probably linked to this species' coastal habits, and the fact that they are less abundant than other pinniped species. A combined 1993 count of 3,166 seals for all 8 California Channel Islands was reported by Hanan and Beeson (1994). This number is an index of abundance, which is estimated to represent approximately 50 to 70 percent of the peak seasonal abundance.

California sea lion (*Zalophus californianus*): California sea lions were the most frequently encountered species within the SWFSC area (1.82 sightings/100 km), although the mean school size was only 1.4 animals (range= 1-16). Sea lions were sighted throughout the study area, and were encountered most frequently over the Santa Rosa-Cortes Ridge and west of San Nicolas Island. The highest group encounter rates were in summer (2.54 schools/100 km) when animals are breeding and pupping, and nursing females make frequent foraging trips to sea. The locations of all on-effort sightings are shown in Figure 27. California sea lions are the most abundant pinniped species in southern California. The largest breeding rookeries occur at San Miguel and San Nicolas Islands, respectively. Based on growth rates obtained from yearly pup counts at breeding colonies, an assumed stable age structure, and a hypothetical survivorship schedule, the population estimate for the U.S. stock in 1990 was 111,016 individuals³ (C.I.= 101,361-143,211).

Sightings that were not identified to species and species that were only seen outside of the SWFSC area are shown in Figures 28-34.

³ - Lowry, M.S. *et al.* (1992). Status of the California sea lion (*Zalophus californianus californianus*) population in 1992. Administrative Report LJ-92-32, available from the Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038, 34 pp.

ACKNOWLEDGEMENTS

This project was made possible through the dedication of many people. The field biologists who collected the marine mammal data were: Wes Armstrong, Scott Benson, Susan Chivers, Terry Farley, Daniel Fink, Jim Gilpatrick, Fred Julian, Carrie LeDuc, Tim Lee, Morgan Lynn, Mark Lowry, Joyce Sisson, Robin Westlake (and J.B, J.V.C. and K.A.F.). Tim Gerrodette and Tim Lee (and J.B.) wrote the computer programs used to plot marine mammal sighting and effort data. Software for recording transect data was written by Jim Cubbage (and J.B.). Rich Cosgrove provided the bathymmetry data used in sighting plots. Aspen Helicopters of Oxnard, CA provided the aircraft support, and they were willing to cut holes in their aircraft numerous times to accomodate our needs. We thank pilots John Drust, Barry Hansen, and Rick Throckmorton for their enthusiasm and professionalism. Sami Adlay and Joe Kimbrough helped coordinate flight scheduling within the Outer Sea Test Range. Chuck Elsbury provided technical expertise in setting up an aerial expendable thermograph system. This project was funded by the U.S. Navy's Naval Air Warfare Center in Pt. Mugu, California. Data collected near the Channel Islands were collected under permit CINMS-01-93, issued to the Southwest Fisheries Science Center. All of the data were collected under marine mammal permit #748 issued to the Southwest Fisheries Science Center. This report was improved by the reviews of Andy Dizon and Sue Moore.

LITERATURE CITED

- Barlow, J., C. Oliver, T.D. Jackson, and B.L. Taylor. 1988. Harbor porpoise (*Phocoena phocoena*) abundance estimation in California, Oregon, and Washington: II. Aerial surveys. Fishery Bulletin U.S. 86:433-444.
- Barlow, J. 1994. Recent information on the status of large whales in California waters. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-203. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 27 pp.
- Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall 1991. Fishery Bulletin U.S. 93:1-14.
- Bowditch, N. 1966. American practical navigator, an epitome of navigation. U.S. Naval Oceanographic Office. H.O. Pub. No. 9. Washington, DC. 1524 pp.
- Buckland, S.T., J.M. Breiwick, K.L. Cattanach, and J.L. Laake. 1993. Estimated population size of the California gray whale. Marine Mammal Science 9(3):235-249.
- Calambokidis, J., G.H. Steiger, J.C. Cubbage, K.C. Balcomb, C. Ewald, S. Kruse, R. Wells, and R. Sears. 1990. Sightings and movements of blue whales off central California 1986-1988 from photo-identification of individuals. Rept. Int. Whal. Commn., Special Issue 12:343-348.

- Caldwell, D.K. and M.C. Caldwell. 1989. Pygmy sperm whale Kogia breviceps (de Blainville, 1838): Dwarf sperm whale Kogia simus Owen, 1866. In: Ridgway, S.H. and Harrison, R. (eds), Handbook of Marine Mammals, Vol. 4. p. 235-260. Academic Press Limited.
- Carretta, J.V. and K.A. Forney. 1993. Report of two aerial surveys for marine mammals in California coastal waters utilizing a NOAA DeHavilland Twin Otter Aircraft, March 9 -April 7, 1991 and February 8 - April 6, 1992. NOAA Technical Memorandum-NOAA-TM-NMFS-SWFSC-185. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 77 pp.
- Chantrapornsyl, S., C.C. Kinze, S. Leatherwood, and W.P. Prematunga. 1991. Notes on the genus Kogia in the northern Indian Ocean. Mar. Mammal Tech. Rep. 3:79-88. (In: Leatherwood S. and G.P. Donovan (eds.). 1991. Cetaceans and Cetacean Research in the Indian Ocean Sanctuary. Nairobi, Kenya. United Nations Environment Programme, Marine Mammal Technical Report Number 3. viii + 287 pp.).
- DeLong, R.L. and B.S. Stewart. 1991. Diving patterns of northern elephant seal bulls. Marine Mammal Science 7(4):369-384.
- Department of the Navy. 1994. Marine mammal protection/mitigation and results summary for the shock trial of USS John Paul Jones (DDG 53). Prepared By: Commander, Naval Air Warfare Center, Weapons Division 521 9th St. Point Mugu, CA 93042-5001. Available from Office of Protected Resources, National Marine Fisheries Service, 1335 East-West Highway, Silver Spring, MD 20910-3226. 26 pp.
- Dohl, T.P., K.S. Norris, R.C. Guess, J.D. Bryant and M.W. Honig. 1980. Cetacea of the Southern California Bight. Part II, Summary of marine mammal and seabird surveys of the Southern California Bight area, 1975-1978. Final Report to the Bureau of Land Management, NTIS Rep. No. PB81248189. 414 pp.
- Dohl, T.P., M.L. Bonnell, and R.G. Ford. 1986. Distribution and abundance of common dolphin (*Delphinus delphis*), in the southern California Bight: A quantitative assessment based upon aerial transect data. Fishery Bulletin U.S. 84:333-343.
- Eliason, J.J. and W.J. Houck. 1986. Notes on the biology of a gravid pygmy sperm whale (Kogia breviceps) from California. Cetology (51):1-5.
- Forney, K.A., D.A. Hanan, and J. Barlow. 1991. Detecting trends in harbor porpoise abundance from aerial surveys using analysis of covariance. Fishery Bulletin U.S. 89(3):367-377.
- Forney, K.A. 1994. Recent information on the status of odontocetes in Californian waters. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-202. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 87 pp.

- Forney, K.A., J. Barlow, and J. Carretta. 1995. The abundance of cetaceans in California waters: Part II: Aerial surveys in winter and spring of 1991 and 1992. Fishery Bulletin U.S. 93:15-26.
- Green, G., J.J. Brueggeman, R.A. Grotendt, C.E. Bowlby, M.L. Bonnell, and K.C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Chapter 1 In: Oregon and Washington Marine Mammal and Seabird Surveys. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California, May 1992.
- Hanan, D.A. and M.J. Beeson. 1994. Harbor seal, *Phoca vitulina richardsi*, census in California, May-June 1993. Final Report Cooperative agreement No. NA27FX0273-01. Submitted to NOAA/SWR, January 1994, 61 pp.
- Heyning, J.E. and W.F. Perrin. 1994. Evidence for two species of common dolphins (genus *Delphinus*) from the eastern north Pacific. Contr. Nat. Hist. Mus. L.A. County, 442:1-35.
- Hill, P.S. and J. Barlow. 1992. Report of a marine mammal survey of the California coast aboard the research vessel *McArthur*, July 28-November 5, 1991. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-169. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 103 pp.
- Holt, R.S., and J. Cologne. 1987. Factors affecting line transect estimates of dolphin school density. Journal of Wildlife Management 51:836-843.
- Hubbs, C.L. 1951. Eastern Pacific records and general distribution of the pygmy sperm whale. Journal of Mammalogy Vol 32(4):403-410.
- Jones, R.E. 1981. Food habits of smaller marine mammals from Northern California. Proc. Calif. Acad. Sci. 42:409-433.
- Jones, P.A. and I.D. Szczepaniak. 1992. Report on the seabird and marine mammal censuses conducted for the long-term management strategy (LTMS), August 1990 through November 1991, for the U.S. Environmental Protection Agency, Region IX, San Francisco. July 1992.
- Kasuya, T. 1986. Distribution and behavior of Baird's beaked whales off the Pacific coast of Japan. Sci. Rep. Whales Res. Inst. Tokyo No. 37, pp 61-83.
- Leatherwood, J.S. 1974. Aerial observations of migrating gray whales, Eschrichtius robustus, off southern California. Mar. Fish. Rev. 36(4):45-49.

Leatherwood, S., and W.A. Walker. 1979. The northern right whale dolphin Lissodelphis

borealis Peale in the eastern North Pacific. In Winn, H.E., and B.L. Olla (eds.), Behavior of Marine Mammals, p. 85-141. Plenum Press, New York-London.

- Leatherwood, S., W.F. Perrin, V.L. Kirby, C.L. Hubbs, and M. Dahlheim. 1980. Distribution and movements of Risso's dolphin, *Grampus griseus*, in the eastern north Pacific. Fishery Bulletin U.S. 77(4):951-963.
- Leatherwood, S., R.R. Reeves, W.F. Perrin, and W.E. Evans. 1982. Whales, dolphins, and porpoises of the Eastern North Pacific and adjacent arctic waters: A guide to their identification. NOAA Tech. Rep. NMFS Circular 444, 245 pp.
- Leatherwood, S., R.R. Reeves, A.E. Bowles, B.S. Stewart, and K.R. Goodrich. 1984. Distribution, seasonal movements, and abundance of Pacific white-sided dolphins in the eastern north Pacific. Sci. Rep. Whales Res. Inst. 35:129-157.
- Lockyer, C. 1977. Observations on diving behavior of the sperm whale, *Physeter catodon*. Pages 591-609 in M. Angel, ed. A voyage of discovery. Pergamon Press, Oxford and New York.
- Mangels, K.F., and T. Gerrodette. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and the Gulf of California aboard the NOAA ships *McArthur* and *David Starr Jordan*, July 28 - November 6, 1993. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-211. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 88 pp.
- Minerals Management Service. 1993. Marine Mammal and Seabird Computer Database Analysis System California OCS 1975-1985. MMS U.S. Department of the Interior Minerals Management Service Pacific OCS Region Contract No:14-35-0001-30596. Prepared by Ecological Consulting, Inc. Portland, Oregon January 1993; available on CD-ROM.
- Nagorsen, D.W. and G.E. Stewart. 1983. A dwarf sperm whale (Kogia simus) from the Pacific coast of Canada. Journal of Mammalogy 64(3):505-506.
- Perryman, W.L. and M.S. Lynn. 1993. Identification of geographic forms of common dolphins (*Delphinus delphis*) from aerial photogrammetry. Marine Mammal Science 9(2):119-137.
- Rice, D.W. 1965. Offshore southward migration of gray whales off southern California. Journal of Mammalogy 46(3):504-505.
- Rice, D.W. 1989. Sperm whale *Physeter macrocephalus* Linnaeus, 1758. pp. 177-233 *In:* Handbook of marine mammals volume 4: River dolphins and the larger toothed whales. Eds. Sam H. Ridgway and Sir Richard Harrison.

- Roest, A.I. 1970. *Kogia simus* and other cetaceans from San Luis Obispo County, California. Journal of Mammalogy Vol. 51(2):410-417.
- Rosel, P.E., A.E. Dizon, and J.E. Heyning. 1994. Population genetic analysis of two forms of the common dolphin (genus *Delphinus*) utilizing mitochondrial DNA control region sequences. Marine Biology 119:159-167.
- Shane, S.H. 1994. Occurrence and Habitat Use of Marine Mammals at Santa Catalina Island, California from 1983-91. Bull. Southern California Acad. Sci. 93(1):13-29.
- Smith, R.C., P. Dustan, D. Au, K.S. Baker, and E.A. Dunlap. 1986. Distribution of cetaceans and sea-surface chlorophyll concentrations in the California Current. Marine Biology 91:385-402.
- Stewart, B.S., P.K. Yochem, H.R. Huber, R.L. DeLong, R.J. Jameson, W.J. Sydeman, S.G. Allen, and B.J. Le Boeuf. 1994. History and Present Status of the Northern Elephant Seal Population. pages 29-48 In: B.J. LeBoeuf and R.M. Laws (eds) Elephant Seals: Population Ecology, Behavior, and Physiology, pages 29-48. University of California Press.
- Wade, P.R., and T. Gerrodette. 1993. Estimates of Cetacean Abundance and Distribution in the Eastern Tropical Pacific. Report of the International Whaling Commission 43:477-493.
- Watkins, W.A., K.E. Moore and P. Tyack. 1985. Investigations of sperm whale acoustic behaviors in the southeast Caribbean. Cetology 49:1-15.
- Watkins, W.A., M.A. Daher, K.M. Fristrup, and T.J. Howald. 1993. Sperm whales tagged with transponders and tracked underwater by sonar. Marine Mammal Science 9(1):55-67.

Wind force (Beaufort)	Knots	Descriptive	Sea Conditions	Probable wave height in feet
0	0-1	Calm	Sea smooth and mirror-like	
1	1- 3	Light air	Scale-like ripple without foam crests	1/4
2	4-6	Light breeze	Small short wavelets crests have a glassy appearance and do no break	; 1/2 t
3	7-10	Gentle breeze	Large wavelets; some crests begin to brea foam of glassy appea ance. Occasional wh foam crests	2 k; r- ite
4	11-16	Moderate breeze	Small waves, becomin longer; fairly frequ white foam crests	g 4 ent
5	17-21	Fresh breeze	Moderate waves, taki a more pronounced lo form; many white foa crests; there may be some spray	ng 6 ng m
6	22-27	Strong breeze	Large waves begin to form; white foam cre are more extensive everywhere; there ma be some spray	10 sts Y

Table 1. Sea state conditions measured by the Beaufort scale (from Bowditch, 1966).

Table 2. Numbers of kilometers surveyed in the SWFSC study area and other areas on each of 58 survey dates. Dates where attempted survey flights were aborted due to poor weather are not included.

DATE	SWFSC STUDY AREA	OTHER AREAS	TOTAL
January 23, 1993	408	70	478
January 24, 1993	349	0	349
January 30, 1993	392	86	479
January 31, 1993	467	31	498
February 12, 1993	128	141	269
February 13, 1993	327	19	346
March 6, 1993	401	3	404
March 7, 1993	0	Ż09	209
March 12, 1993	78	237	· 316
April 9, 1993	0	16	16
April 10, 1993	0	208	208
May 1, 1993	191	28	219
May 7, 1993	0	184	184
May 8, 1993	0	147	147
May 9, 1993	679	3	682
May 15, 1993	273	13	286
May 28, 1993	209	4	213
May 29, 1993	495	10	505
May 30, 1993	492	1	493
June 19, 1993	304	7	311
July 24, 1993	390	8	398
July 25, 1993	180	5	185
July 30, 1993	453	4	457
July 31, 1993	276	4	· 280
August 21, 1993	69	0	69
August 27, 1993	337	6	343
October 2, 1993	0	17	17
October 16, 1993	418	0	418
October 22, 1993	436	10	446

Table 2 (continued).

DATE	SWFSC STUDY AREA	OTHER AREAS	TOTAL
October 23, 1993	465	8	473
October 24, 1993	446	10	456
November 20, 1993	362	5	367
November 21, 1993	349	2	351
December 4, 1993	0	327	327
December 5, 1993	225	92	317
December 30, 1993	285	4	289
December 31, 1993	0	124	124
January 1, 1994	0	97	97
January 8, 1994	208	1	209
January 15, 1994	277	6	283
January 16, 1994	177	2	179
January 29, 1994	397	0	397
February 15, 1994	207	0	207
February 25, 1994	169	38.	207
February 26, 1994	605	4	609
February 27, 1994	0	192	192
March 13, 1994	196	30	226
March 29, 1994	263	115	377
April 16, 1994	179	1	180
April 29, 1994	0	316	316
May 6, 1994	125	112	237
May 7, 1994	à0	191	231
May 14, 1994	23	48	71
May 16, 1994	629	8	637
May 18, 1994	210	213	· 423
May 21, 1994	0	42	42
May 23, 1994	160	209	369
May 29, 1994	. 0	371	371

Table 3. Effort, group encounter rate, teffort sightings per 100 km searched.	and animal encounter rate Animal encounter rates 1	e information for the thr represent the number of	ee geographic and two sub animals per 100 km searc	hed. 17,650 km were su	encounter rates are the number of on- irveyed in all areas.
Study Area	SWFSC ¹	Area A	Area B ²	Area C ³	Inshore
Size of Area (km ²)	10173	7588	2585	1746	33403
Km Surveved (total)	13734	9795	3939	1344	2572
Beaufort 0-2 (calm)	4016	3257	759	133	1353
Beaufort 3-4 (rough)	9718	6538	3180	1211	1219
Winter	4615	3111	1504		1204
Spring	4639	3141	1499	1344	1306
Summer	2006	1639	368	ı	30
Fall	2473	1904	569	•	32
Group Encounter Rate (overall)	3.07	3.54	1.88	0.89	8.50
Beaufort 0-2 (calm)	4.81	5.40	2.24	3.01	4.98
Beaufort 3-4 (rough)	2.51	2.86	1.79	0.66	7.63
Winter	3.01	3.70	1.60	ı	11.50
Spring	3.06	3.25	2.67	0.89	4.98
Summer	4.54	5.24	1.36	ı	23.00
Fall	1.98	2.31	0.88	I	22.10
Animal Encounter Rate (overall)	131.4	169.3	37.2	78.9	542.4
Beaufort 0-2 (calm)	140.9	167.6	26.1	327.9	142.6
Beaufort 3-4 (rough)	34.6	43.3	16.8	7.8	414.0
Winter	78.0	101.3	29.8	ı	302.6
Spring	189.4	256.7	48.3	78.9	238.1
Summer	102.1	114.0	48.6	•	1653.04
Fall	146.0	183.6	20.3	-	21120.05
	_				

¹- Original Southwest Fisheries Science Center Study Area = (Area A + Area B).

²- SWFSC recommended shock trial area.

³- Area where shock trials occurred as part of consent decree.

⁴- Value based on only 30 kilometers of effort.

⁵- Value based on only 32 kilometers of effort.

Table 4. On-effort sighting inform includes "unidentified large whale	ation for all speci " and "unidentifi	es encountered during 13, ted small whale".	734 km surveyed within the	SWFSC study area. The car	egory "unidentified whale"
Species	# Sightings	Sightings per 100 km	# Animals per 100 km	Mean School Size	School size range
Dolphins and porpoises					
Common dolphins	54	0.394	26.45	67.3	1-2 000
Northern right whale dolphin	26	0.189	26.24	138.8	7-7 763
Risso's dolphin	24	0.173	5.99	343	3-738
Pacific white-sided dolphin	17	0.124	3.00	24.7	7-163
Dall's porpoise	10	0.070	0.29	4.0	1-8
Killer whale	ŝ	0.022	0.05	2.3	-1 -4
unidentified delphinid	6	0.065	0.39	5.9	1-15
Whales					
Sperm whale	7	0.049	0.18	3.6	111
Pygmy sperm whale	1	0.005	0.005	0.0	11-1
(All beaked whales)	11	0.081	0.12	1.5	- 1-
Cuvier's beaked whale	6	0.043	0.07	1.7	1-4
Baird's beaked whale	2	0.016	0.03	2.0	
mesoplodont beaked whale	1.	0.005	0.005	1.0	ı
unidentified beaked whale	2	0.016	0.02	1.0	ı
Fin whale	11	0.081	0.13	1.6	1-4
Blue whale	×	0.059	0.09	1.5	
Minke whale	1	0.005	0.005	1.0	-
Gray whale	1	0.005	0.005	2.0	ı
unidentified whale	6	0.065	0.08	1.2	1-2
Pinnipeds					
California sea lion	237	1.820	2.44	1.4	1-16
Northern elephant seal	13	0.097	0.09	1.0	-
Harbor scal	-	0.005	0.005	1.0	
unidentified pinniped	.	0.032	0.03	1.0	•
Other					
unidentified marine mammal	3	0.022	0.022	1.0	

Table 5. Seasonal group encounter rates for species encountered on-effort within SWFSC study area. Only species (or species groups) detected a minimum of five times within the study area are included.

Species	# Sightings	Sightings	per 100 km		
	(all seasons)	Winter	Spring	Summer	Fall
Dolphins and porpoises					
Common dolphin ¹	54	0.17	0.28	1.19	0.36
Northern right whale dolphin	26	0.30	0.26	ı	1
Risso's dolphin	24	0.30	0.17	0.10	ı
Pacific white-sided dolphin	17	0.13	0.09	0.30	0.04
Dall's porpoise	10	0.06	0.10	•	0.08
Whales					
Sperm whale	7	ſ	0.04	ı	0.04
Cuvier's beaked whale	6	0.06	0.02	ı	0.08
(All beaked whales ²)	11	0.06	0.06	ı	0.20
Fin whale	11	0.08	0.02	0.10	0.16
Blue whale	8	·	ł	0.40	1
Pinnipeds					
California sea lion	237	1.67	1.96	2.54	0.73
Northern elephant seal	13	0.10	0.13	0.05	0.04

¹ - The combined winter/spring encounter rate for common dolphin is 0.227 schools/100 km. The combined summer/fall rate is 0.734 schools/100 km.

² - Includes Cuvier's beaked whale (6 sightings), Baird's beaked whale (2), Mesoplodon sp. (1), and unidentified beaked whales (2).

Table 6. Seasonal mean school sizes for species encountered on-effort within SWFSC study area. Only species detected a minimum of five times within the study area are included.

Species	All seasons	Mcan School Size Winter	Spring	Summer	Fall
Dolphins and porpoises					
Common dolphin	67.3	109.9	20.9	317	0.001
Northern right whale dolphin	138.7	13.9	284.3		0.761
Risso's dolphin	34.3	27.9	43.3	13.2	.
Pacific white-sided dolphin	24.2	26.5	42.8	0.01	- 1
Dall's porpoise	4.0	4.3	4.7		2.0
Whales					
Sperm whale	3.6	•	5 8		
Cuvier's beaked whale	1.7	2.0	1.0		0.1 2 1
Fin whale	1.6	1.1	10	2 5	C.1
Blue whale	1.5		e i	1.5	· .
Pinnipeds					
California sea lion	1.4	1.5	1.4	1.3	1.6
	1.0	1.0	1.0	1.0	1.0
Table 7. Marine mammal species codes used during 1993-1994 aerial surveys.

Code	Common Name	Scientific Name
BA	Minke whale	Balaenoptera acutorostrata
BD	Baird's beaked whale	Berardius bairdii
BM	Blue whale	Balaenoptera musculus
BP	Fin whale	Balaenoptera physalus
DD	Common dolphin	Delphinus spp. (D. delphis or D. capensis)
ER	Gray whale	Eschrichtius robustus
GG	Risso's dolphin	Grampus griseus
GM	Short-finned pilot whale	Globicephala macrorhynchus
KB	Pygmy sperm whale	Kogia breviceps
LB	Northern right whale dolphin	Lissodelphis borealis
LO	Pacific white-sided dolphin	Lagenorhynchus obliquidens
LR	Unidentified large rorqual	
LW	Unidentified large whale	
MA	Northern elephant seal	Mirounga angustirostris
MM	Unidentified marine mammal	
MN	Humpback whale	Megaptera novaeangliae
00	Killer whale	Orcinus orca
PD	Dall's porpoise	Phocoenoides dalli
PM	Sperm whale	Physeter macrocephalus
PU	Unidentified pinniped	
PV	Harbor seal	Phoca vitulina
SC	Striped dolphin	Stenella coeruleoalba
SD	Unidentified small delphinid	
SDUP	small delphinid/unidentified porpoise	S
SW	Unidentified small whale	
SZ	Unidentified small ziphiid	
TT	Bottlenose dolphin	Tursiops truncatus
UB	Unidentified baleen whale	
UD .	Unidentified delphinid	
UM	Unidentified Mesoplodont beaked whale	Mesoplodon sp.
US	Unidentified seal	
UW	Unidentified whale	
WB	Unidentified common/white-sided/striped dolphin	
ZC	California sea lion	Zalophus californianus
ZI	Cuvier's beaked whale	Ziphius cavirostris
ZU	Unidentified ziphiid (beaked whale)	

Table 8. All on and off-effort cetacean and pinniped sighting information for 1993-1994 aerial surveys. Sightings are listed alphabetically by species code ("SPEC1", "SPEC2"...), and secondarily by sighting number (SI#). The percent composition (%) of each species within the school is given, as well as sighting types: "O" (=off-effort), "P" (=primary observer), or "S" (=secondary or belly window observer). The observer ("OBS") who detected the animals is given by a two-letter code. Independent best school size estimates (up to five) are anonymously given.

ŝ	1																																						
MATES 4	1 1 1 1 1							12	4	•																				,		•		-					
ESTI 3	5		-					12	4	-													-								m	-	~	"					
BEST 2	2		٢					11	4	2	-			m								~	-	2	-				Ę	-	m		~	-		~	ţ-	m	-
~					17	9	2	12	4	M	-	M	-	м	•	2	-	2	•	-	•	~	-	~	e	-	2	~	-	-	m	-	2	-	-	~	e	m	-
OBS	5	5 5	SB:	SB	SB	₽	۶ſ	ΚF	ΤF	Ч	ΚF	ΚF	КF	Å	KF	Ŗ	ΚF	ΚF	TF T	ΤF	Ŗ	KF	Ľ	11	ΚF	KF	Ŗ	KF	ΤF	ΚF	ΚF	KF	KF	MA	ų	ΤF	15	Ľ F	5
LONGITUDE	11931.67	11946.14	11942.38	11857.15	11913.01	11834.11	12024.24	12017.26	12028.17	12015.92	11944.57	11948.30	11955.76	11953.09	11951_66	11951.36	11953.21	11953.21	11953.21	11951.61	11951.41	11938.66	12030.89	12015.22	11951.10	11947.33	11949.85	11955.64	11942.69	11948.60	11945 60	11943.29	12053.19	11941.95	11950.89	11956.64	12012.10	11958.65	11956.70
LATITUDE	3344.95	3248.11	3256.89	3322,07	3347.96	3324.26	3307.25	3236.90	3309.57	3250.50	3352.11	3256.20	3316.27	3322.83	3324.42	3324.92	3328.13	3328.13	3328.13	3332.59	3332.92	3346.26	3315.09	3328.66	3323.23	3331.81	3321.68	3317.53	3334.46	3311.18	3313.82	3313.26	3318.47	3250.58	3312.90	3316.73	3330.07	3255.76	3257.31
TIME	1128.73	0958.55	1545.42	1327.33	1429.33	1455.17	1502.47	1017.57	1522.68	1512.13	0945.60	1018.07	1130.70	1135.00	1137.52	1137.88	1140.03	1140.03	1140.03	1144.58	1144 75	1152.52	1554.97	1609-60	1152.57	1155.92	1419.18	1422.97	1426.47	1603.85	1609.00	1612.78	1451.12	1603.47	1045.53	1053.52	1108.75	1533.22	1541.32
P DATE	930312	930724	931230	931231	940101	940313	930516	930725	930731	940506	930528	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930725	930725	930725	930725	930730	930730	930730	930730	930731	930731	930827	930827	930827	930827	930827
ίλ	Δ. (s v	0	۵.	۵.	0	٩	0	0	٩	0	0	0	0	0	0	0	0	0	0	0	0	٩.	0	0	0	0	0	0	0	0	0	0	٩	۵.	٩	٩	٩	٩
*																																							
SPEC4																																							
~					\$	67																																	
SPEC3					ũ	£																																	
%					88	17								67																									
SPEC2					ZC	Ħ								2																									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80	88	0	8	9	16	8	8	8	8	8	8	8	33	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
SPEC1	BA	A A	BA	BA	BA	BA	8	8	8	ß	MB	Ж	Ma	BM	W8	Wa	Ma	W8	BM	Ma	Ma	Wa	, W8	, WB	WB	WB	BM	BM	BM	BM	BM 1	BM	BM 1						
#IS	199 2204	363E	602	727	762	266	286	502	539	1063	308	363H	381	382	385	386	389A	389C	389B	390	391	393	409	411	470	471	57	476	518	531	532	533	537	541	552	554	556	559	560

Table 8 (continued).

м м	1																																						
IMATES 4	4 8 8 8																-					4											•	Į	679			225	
3 3	4 1 1 7		•		٢	-		18	12		c	x			M		-					M	180		ο L	n	35	1		37	090		ŝ		400		<u>}</u>	140	
BES1		2		-	2		Ĵ	19	22	-	- į	ņ			м		-	•		· ~		4	80	<b></b>	2'	n	45	24		30	1200 2	550	m i	22	225	000	ξ,	1 8	1500
-	)         	2		- •	- ;	- 5	<u>u</u> -	27	27	-	- \	0 0	<i>.</i> .		m	~	- r	V •	- (	~~~	N	4	130	- 1	~ 1	n n	N n	26		65	1217	200	νļ	<u>د</u>	906	٩ ţ	200	: <del>8</del>	1200
OBS	1 1 1 1	5	片	5	<b>7</b> 7	29	3 4	S₽	MA	ц Ч	M S	5	ΚĿ	ÿ	님	۲	≓₽	느느	39	9	ŋ	g	Д,	Ж.	ž :	99		ರ	КF	К	RW	с Г	9	9	<u>م</u> ہ	3		រ	RW
LONGI TUDE	E E I I I I I I I I I I I I I I I I I I	11953.34	12001.26	11948.16	48. CUU21	07-11071	12014 51	11943.21	11740.98	11956.68	12000-01	12002 Z0	11953.68	12022.66	12020.22	12019.45	11938.52	11052 76	12025.62	12034.11	12010.67	11959.37	11942.67	11923.81	12013.44	110/0 20	11958.19	12018.64	12022.95	12016.64	11935.22	11923.81	11956.36	11959.15	11947.14	11928.08	117/0 08	11941.27	11927.38
LATITUDE	5 5 5 5 5 5 5 5 5 5 5	3300.17	3333.96	3511.8/	5240.U9 2225 70	01.0200	3256 04	3334.55	3234.28	3331.16	3328.46	50.1055	21 CHOC	3335.76	3311.28	3311.79	3301.42	2200.00 2201 82	3328.68	3335.39	3329.01	3306.33	3257.00	3346.90	3308.45	CV.VUCC	3315.02	3315.78	3235.98	3239.98	3325.57	3355.25	3311.60	3245.29	3356.01	27.0022	77.0UCC	3358.36	3357,66
TIME	4 1 1 1 1 1	1550.80	1632.60	1456.20	15/0 27	12.0401	1000 12	1152.75	1147.32	1551.02	1525.20		1126.77	1446.35	1652.25	1656.70	1617 70	1028 75	1103.72	1114.03	1157.10	1005.02	1537.33	1142.80	1414.12	15/0 00	1201.75	1048.67	1020.38	1028.13	1317.42	1339.95	1037.03	1138.73	0932.05	14.55.97	CI .2001	1557.73	1340.38
DATE	1 1 1 1	930827	931022	950125	950124	0010020	212026	930307	930410	930509	930516	050020	410006	930724	930724	930724	930731	120000	910156	931016	931022	931120	931230	940227	940313	940429	930123	930124	930131	930131	930212	930212	930213	930306	930307	105050	21 20 26	930501	930507
ТҮР		۵.	0	۵.	0 0		2 0	. <u>a</u>	0	o	۵.	<b>-</b> c	) C	о <u>с</u>	۵.	0	o c		م	. 0	۵.	۵.	<b>n</b> .	۵.	0 0	<b>-</b>	5 00		0	۵.	0	0	• •	۵.	0 0	5 1	<u>ہ</u> د	0	0
*																							67																
SPEC4																							8																
*	1 1 1 1																						31								-								
SPEC3	, , , , , ,																						LB								Ы								
*					00	8 8	ţ	6	8		ć	Š											~								-						;	-	
SPEC2	8 2 2 8 9 9 9 9 9				-	2 2	2	81	8		-	2											ZC								99			•			00	ħ	
*	s 5 9 1	100	99	8	Bt Bt	<u>v</u> r	- G	36		100	<u>8</u>	Z ę	35	86	10	100	200		35	100	10	100	-	9	80		36	10	90	<u>1</u> 0	98	00	<u>1</u> 0	8	88	23	B	<u>6</u>	00
SPEC1	5 7 8 8 7 8	BM	WB	8	8	<u>7</u>	7 8	6	da B	đ	8	8	7 7 2 2	5 <b>6</b>	e B	BP	<u>ድ</u> 8	<b>a</b> 6	2 2	5 <b>6</b>	6	B	BP	đ	8			88	8	8	8	8	8	8	8	8	82	3 8	8
#1S	8 0 1 1 1	561	290	<b>ن</b> م ا	82.0	70 70	011	312	224	264	287	545 7775		401 10	424	426	55	700	000	572	582	619	708	941	975	1105	7011	22	24	55	104	111	121	153	<u>5</u>	81	781	231	235

	Ś																																												
IMATES	4			51			35	;				150	•																							•		•				25			100
T EST	M		45	20	48	66	ង	82	1			225	₽	ω		11	ŝ				£	30	50	16				20	ω	∞	2			ង						9		18			68
BES	2		30	37	ř	175	ß	56	200	000	000	120	20	9	33	12	~	2			63	45	50	₽	201	12	52	17	10	1	30		12	27		∞	50		135	~	10	15	<b>45</b>		Я
	-		31	70	35	85	20	60	400	3250 2	2250 2	155	19	13	55	14	ŝ	30	250	20	45	ß	61	14	176	14	27	18	~	12	ß	4	12	S	15	10	22	50	240	Ś	35	16	55		90
	OBS		ŢF	ΤF	RW	ų	RW	ŋ	9r	MA	M	ΤF	цХ	КF	ЧЧ	КF	Ŗ	٩Ċ	ÿ	КF	õ	ΤF	SL	ΤF	SL	КF	SL	КF	К,	Ľ	К Г	ЧЧ	ĶГ	님	Ľ	KF	sr	ΤF	ΤF	ΚF	MA	ΚF	MA	КF	КF
			11928.49	11842.46	11805.78	11827.18	12020.27	11953.85	11936.38	11927_94	11923.74	11817.94	12032.64	12023.38	12051.83	12029_04	12048.33	11951.22	11929.88	11937.46	12038.00	12033.39	11956.85	11936.18	11946.31	11947.75	11950.24	12040.61	12011.46	12007.59	12005.27	12004.95	12003.52	12000.58	12020.22	12016.12	12015.25	12025.19	11952.55	12041.94	12045.19	12039.96	12038.09	11951.19	12002.69
			3351.47	3324.90	3333.84	3343.76	3256.76	3319.97	3356.20	3358.23	3359.53	3335.43	3253.74	3301.55	3317.63	3330.06	3314.25	3248.82	3353.34	3343.18	3255.90	3259.73	3257.32	3253.86	3302.66	3309.60	3311.55	3320.71	3331.64	3334.74	3336.81	3337.44	3338.06	3336.74	3311.28	3313.68	3313.38	3340.53	3321.78	3255.73	3300.19	3306.77	3305.33	3322.31	3259.24
	TIME		1439.00	0959.62	1053.23	1117.53	1113.53	1558.13	1448.27	1505.47	1520.90	1059.30	1547.15	1557.55	1138.12	1544.98	1608.05	1712.15	0920.28	0926.25	1603.48	1612.48	1009.87	1028.45	1042.83	1109.68	1115.28	1500.58	1614.23	1619.07	1624.20	1627.90	1628.58	1633.12	1652.28	1013.73	1016.83	1114.38	1148.08	1039.83	1045.95	1110.02	1119.62	1431.90	1531.05
	DATE		930507	930508	930508	930508	930509	930509	930515	930515	930515	930521	930528	930528	930529	930529	930529	930529	930529	930529	930619	930619	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930724	930725	930725	930725	930725	930730	930730	930730	930730	930730	930730
	₹ ₹		٩	م	0	0	م	۵.	0	0	0	٩	۵.	۵.	٩	۵.	٩	٩	0	0	ፈ	۵.	٩	۵.	٩	۵.	S	٩	م	۵.	٩	۵.	۵.	0	۵.	٩	0	0	٩	٩	0	٩	<u>م</u>	0	۵.
;	*																																												
	SPEC4																																												
;	~						Ś									0	1	56																											
	SPEC3						68									ZC		3																											
•	* :		<u>ь</u>	<b>~</b>		•	~						ñ		.	ខ្ល	82	4					۲ ۲	~ ·	-	ı	M	Ŷ								1	35								
	SPECZ		ZC	ZC		z	<u>_</u>						<b>B</b>			<u></u>	2	ZC				1	zc	ZC	zc	ł	ZC	ZC									z								
2	*		91	8	<b>1</b> 0	6	89	9	100	100	<u>1</u> 0	100	67	8	<u></u>	29	8	99	8		8	00	Š,	5	8	88	26	5	8	88	3	88	B	88	8	8	65	8	8	8	8	8	88	38	3
	SPECT		8	8	8	8	8	8	8	8	8	8	8	8	8	8 8	8 :	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8 8	8	8	8	8	8	8	8	8	8	8	20
	#15		243	248	520	3	256	266	270	273	274	293	200	502	212	220	2 i	536	540 255	ž	9 <u>6</u> 2		565F	204	ğ	375	5/6	402 1	415	414	<u>4</u>	417	814	419	Ç i	436	437	453	469	203	204	202	85	222	ğ

Table 8 (continued).

Table 8 (continued).

ı

	n ¦																																												
MATES	4								100		22										<del>ا</del> 5	68											400												
EST	m		22	0				2	35		ង	20					2			80	404	185		85	18	200		Р	5	300	260	ខ	300	1	180		30		·	R					
BEST	2		17	16				12	Я		13	38	10	2000		200	19		10	07	a c	110	475	38	17	1800 1	850	62	48	250	575	ŝ	850	200	සි	1500	ß		950	40				200	}
	-		28	12			m	12	65		99	45	14	2000 2	400	175	5	300	5	5	5	110	390	35	22	1000	600	100	35	375	550	10	1100	300	130	1200	45	1200	200	5	2	nco		007	<b>}</b>
	0BS		MA	MA	ΤF	M	M	ЖF	Ŗ	MA	Ľ	ų	ΤF	5	ÿ	1	٥ſ	Ŋ	2	; =			9	5	ΤF	ð	ŋc	ð	с Г	ΤF	Ŷ	5	ΤF	₽	Ŗ	Ŗ	Ъ.	SB		Ъ.		90 N		у Н	-
	ONGITUDE		11954.46	11953.66	11939.16	11941.36	11953.54	11934.59	11935.53	11938.48	11955.82	11950.30	11958.46	11944.42	12010.59	12032.33	12005.76	11922.50	11051.51	12015 70	12028 26	11944.89	12043.21	12009.77	11943.11	12002.38	11955.76	11945.55	12018.95	11959.72	11910.44	11949.84	11947.27	11832.82	11942.67	11903.24	11827.94	11821.54	11956.85	11905.47	11909.85	11855.60	11000.00	11055 47	
			3306.37	3307.03	3307.80	3304.56	3253.64	3257.42	3257.73	3302.02	3316.34	3311.54	3318.45	3306.90	3328.65	3306.44	3323.44	3405-46	3321 45	3340 71	04 7775	3246.95	72 0022	3300.11	3257.01	3338.84	3318.59	3300.85	3335.99	3320.15	3332.60	3305.34	3309.16	3317.83	3257.00	3310.35	3248.37	3317.36	3356.09	3335.14	3245.89	3331.11	10.2000	CI - C2CC	
	TIME	1 . 1 . 1 1 1 1 1 1 1 1 1 1 1	1543.52	1550.10	1615.75	1617.58	1626.88	1610.62	1612.95	1621.02	1635.52	1038.35	1055.93	1137.58	1159.48	1548.47	1149.47	1428.57	1553 72	1626.05	1440 40	051 73	1105 00	1505.20	1532.90	1212.07	1501.75	0935.35	1410.52	1436.17	1015.90	0920.28	1051.60	1509.65	1537.33	0928.97	0950.98	1425.03	1032.02	1500.85	1002.08	1420.92	20"N7CL	70-1171	
	DATE	1 1 1 1 1 1 1 1 1 1	930730	930730	930730	930730	930730	930731	930731	930731	930731	930827	930827	931022	931022	931022	931023	931023	031023	220120	221022	021026	031024	031024	931024	931120	931120	931121	931121	931121	931204	931205	931205	931205	931230	931230	931231	931231	931231	940101	940101	940108		940129	740667
	ΤYΡ	1 1 1	۵.	۵.	0	0	٩.	0	0	0	•	. a	Δ.	. <b>с</b> .	. C	C	• •	. c	) C	2 0		L C	2	_ <u> </u>	. 🕰	. <b>a</b> .	. <b>a</b>	. <b>с</b>	. <b>с</b>		۵.	S	۵.	0	٩	0	٩	0	0	۵.	0	0 0	э (		L.
	*	, ; ; ;																																	й										
	SPEC4	           																																	5										
	%	1 1 1 1																																	<b>*</b>										
	SPEC3	1 1 1 1 1																																	ZC										
	*	1																																	<b>~</b> ~~	<b>4</b>								•	
	SPEC2	1 1 1 1 1 1																																	B	ZC	i							ł	٦ ۲
(panu	*	1	<b>O</b>	2	88	88	88	2 2	80	3 2	38	3 2	3 2	38	38	200	88	3 2	3	33	33	33	39	3 5	38	32	32	8.5	38	32	80	001	80	8	67	Š	10	001	8	00	100	001	8	86	3
	SPEC1		2	2	88	88	88	8 2	8 2	8 2	3 2	3 2	8 2	32	32	32	3 2	32	3 2	3 8	3	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3 2	88	8	88	8	8	8	8	8	8	8	8	8	8	8	n
lable c	#IS		526	507	122	5	225	2,42	772	1472								000	100	ŝ	508	609		010	C 10	010	720	020	224	240	979	670	629	692	708	710	711	248	752	269	785	794	662	832	8/9

ŝ	1 1 1																																
FIMATES 4											ø	8		6	320																		
T ES	a M	χ, χ		54 9	К	5			2	0	15	12	∞	ç	350	}																4	10
BES 2		240 240		2 2	88	37	11		: 4	=	ŝ	14	9	ç	20																m	4	5
-	60 2800 8	220 520	<u>6</u> 6	15	40 23	ŝ	7 8	2	295	50	2	20	~	M C	7 60 70	'n	-	- (	20 M	n d	r M		-	-	-	Ņ	2	m	ę	2	M	4	<b>2</b> .
OBS	F J S	감도망	55	B F	8 II	KF	ц Ч	Ξ	ᅸ	ł	ΗL	g	M	۲ ۲	3 9	g	КF	9 :	<u>ب</u>	л Ч	2	Т	Ъ	g	g	Ŋ	с Г	ę	Ŋ	5	<u>1</u>	<u></u>	¥,
	11955.18 11927.64	11749.59	11828.84 11831.75	11729.74 12012.09	12045.00 11816.11	11847.28	12020.20	12020.54	12012.07 12057.15	12016.90	12040.71	12046.18	12036.25	12058.98 12045 04	12047.40	12024.51	12002.47	12004.19	11020 88	11925_95	11936.03	11938.18	11927.00	11931.50	11930.04	11927.75	11917_05	1937.52	1930.78	1926.47	1912.14	1946.56	1947.17
LATITUDE	3359.18 3406.63 3710 85	3305.82	33318.17	3259.84 3259.84	3231.88 3303.91	3307.70	3237.18	3248.10	3244.57	3239.99	3214.21	3208.51	3210.34	72.U225	3207.06	3244.37	3348.00	5517.10 22/3 70	2355 47	3343.31	3325.75	3315.83	3344 69	3334.37	3340.02	3347.86	3332.47	3353.38	3343.34	3358.23	5512.42	3353.79	14.5655
TIME	1343.90 1406.92 1206.48	1509.40	1424-62 1508-25	1523.20	1601.08 1321.08	1346.47	1514.97	1538.35	1544.67	1229.87	1318.38	1402.33	1415.55 76.75	C8.1241	1442.60	1633.80	0858.12	1211 07	1210.07	1349.53	1357.85	1402.50	1052.85	1327.50	1330.30	1334_40	0942.13	1008.90	1227.17	1507.97	71049.US	1402.35	1400.02
DATE	940225 940225 940225	940227	940313	940506	940506 940507	940507	940518	940518	940573	940523	940529	940529	940529	940529	940529	940529	930123	421066	930131	930131	930131	930131	930131	930212	930212	930212	930213	30307	30307	30307	21 CDC	21202	ZICNC
ТҮР	000		000	<b>.</b> .	0 •	• •	⊾ ທ	Ś	۹ ۵	. 0	٩	ር ሳ	r (	<u>ہ</u> د	. 🕰	0	0 0	5 c	) a	0	0	0	0	0	0	0	0	s	0	0 0	، د	- c	5
*																																	
SPEC4																																	
*	24	i			49																					•							
SPEC3	ZC				ГО																												
*	65				1	M									15																		
SPEC2	2				ZC	ZC									SC																		
~	601	<u>66</u>	<u>885</u>	<u>86</u>	38	7 00 1	10		86	100	89	<u>2</u> 2	88	28	583	8	<u>B</u> <u>B</u> <u>B</u>	88	8	8	8	88	38	38	38	38	38	38	38	38	3.5	38	3
SPEC1	888	882	382	888	88	88	8	88	38	8	88	82	3 2	88	8	88	ť a	ŝ	ER.	E.	Щ.	۵.	- • - •	 		Ξť	۰. ۲		 : :	. C	: C	50	5
 #IS	889 892 910	966 984 002	1001	1064	201	1078 1078	1081	1082	1088	1096	7601	1000	1100	1101	1102	7011	25	: 79	<b>6</b> 6	2	2i	<u>و</u> و	<u>}</u>	<u>s</u>	<u>s</u>	601 121		101	0/1	<u>0</u> 8	200	ž	

Table 8 (continued).

Table {	8 (cont	inued														BEST	ESTIMATES	
#1S	SPEC1	*	SPEC2	*	SPEC3	%	SPEC4	%	ТҮР	DATE	TIME			OBS	-	2	3 4	۲ i
5 5 5 5	- - 		6 9 9 9 9 9 9 9		9 1 1 1 1 1 1	1	1 2 7 7 7 7	1 1 1 1		1 1 2 2 2 3								
												• .						
704	ER	<u>10</u>							0	931230	1155.90	3405.77	11956.81	KF	Ņ			
202	Яï	100							0	931230	1423.43	3402.11	11920.13	SB				
206	Ш	100							0	931230	1446.15	3324.94	11941.18	КF				
723	Я	34	Q	5	2	ø			۵.	31231	1300.78	3305.70	11840.49	Ŗ	9	15		
745	ũ	100							0	31231	1401.75	3326.29	11834.99	9	2			
747	ű	100							0	931231	1416.07	3319.73	11828.87	g				
749	ű	100							0	931231	1444.02	3326.92	11750.14	КF	•			
750	H	100							0	931231	1455.70	3326.16	11749.89	КF	<b>*</b> -			
731	ä	<u>10</u>							0	931231	0944.78	3402.04	11920.18	КF	-			
753	£	100							0	931231	1053.03	3412.38	11926.25	ЖF	2			
762	Я	\$	BA	Ŷ	ZC	88			۵.	940101	1429.33	3347.96	11913.01	SB	17			
781	Ш	100							0	940101	1529.92	3325.64	11835.01	9	m			
<u>562</u>	Ë	100							0	940108	1422.83	3330.88	11854.32	4	-			
262	E	100							0	940108	1444.97	3320.67	11831.44	MA	-			
798	£	100							0	940108	1447.08	3320.76	11831.87	MA	М			
800	E	100							0	940108	0935.58	3355.58	12009.59	ΤF	4			
801	Ш	100							0	940108	0947.88	3400.65	12015.57	ΤF	M			
802	ä	100							0	940108	1007.32	3403.84	12002.14	۲F				
804	H	100							0	940108	1014.98	3403.83	12000.61	M	4			
805	£	100							0	940108	1027.55	3400.95	11957.03	1F	m			
806	ER	100							0	940108	1029.97	3357.28	11950.92	M	2			
807	Ë	100							0	940108	1032.70	3357.21	11951.11	٩	M			
808	Я	100							0	940108	1042.87	3355.31	11948.47	9	4			
821	Ш	100							0	940115	1514.90	3355.63	11936.49	ч Ч	•			
834	H	100							0	940129	1224.25	3345.25	11937.70	с Г	9			
835	Ш	100							0	940129	1237.02	3403.13	11926.23	ŋ	m			
846	£	100							0	940129	0946.22	3312.45	11927.58	15	M			
847	щ	100							۵.	940130	0956.40	3317.57	11927.31	ŋ	2			
868	Я	15	LB	62	ZC	~			0	940215	1117.95	3306.48	11911.50	с Ч	3	24		
886	Ш	100							0	940225	1333.62	3353.54	12000.39	9	4			
890	Я	100							0	940225	1344.57	3359.37	11953.76	с Г	~			
891	£	100							0	940225	1349.80	3359.12	11953.57	SL	-			
934	ER	100							0	940226	1052.68	3355.28	11943.50	ΤF	\$	9		
936	ER	100							0	940226	1108.72	3354.07	11936.66	SL	2	2		
961	Ĩ	100							0	940227	1429.68	3358.68	11933.93	КF	2	2		
967	ER	100							0	940227	1515.97	3305-02	11749.14	КF	M	м		
973	£	100							0	940313	1149.33	3401.41	11955.88	ц Ч	4			
974	Я	100							0	940313	1152.53	3401.85	11954.99	ц Ч	4			
985	H	100							0	940313	1322.58	3314.48	11747.42	ŋ	M			
987	E	100							0	940313	1342.07	3317.29	11755.21	19	<u>6</u> 1			
988	Ë	001							5	1010	20 + 60	24.1100	47.4C/11	;;	יח			
994	ű i	<u>8</u>							0 0	940315	14.54.47	3528.80 7775 70	11858.8/ 11855 /2	╡╒	<u>י</u> ח			
566	ĒK	301							5	CI CU4/	1440.00	00.6266	C4. CC011	<u>-</u>	n			

	<u>°</u> :																																									
MATES	4																											ļ	5			10	2						27			
ESTI	m												ł	22		99	}					9	090	ļ	2:	13		ľ	۲,	ς β	2	10	2	15	2				22			1
BEST	2												ł	56		6	į					9	1200 2		16	14	:	10	=	ຊີ	2	10	2	16	2	17			22	۲	n	12
	-		4	9	0	N I	M	-	4	4	ŝ	2	2	47	•	- 6	1	<b>o</b> i	8	12	M	9	1217	ŝ	2!	17		11	20	ŝ	⊇ų		2 0	16	2.0	~	4	10	22	Ϋ́ς	n g	Ŋ 6
	085		W	ê	2	с Г	ц Ч	11	ц Ц	ŋ	RW	RW	с Ч	5	2 1	2 4	3 9	397	ŋŋ	9	5	S	RW	RW	с Г	9r	Ð	Ъ С	맞	5	35	3 2	ן <u>פ</u>	3 2	33	5	٩C	Яſ	ВĻ	<u>ک</u>	35	59
	ONGITUDE		11835.68	11834.11	11834.18	11834.00	11830.47	11824.30	11823.15	11803.50	11740.90	11721.57	11958.82	12006.00	100.0001	12018 58	12006 13	12012.16	11949.09	11921.93	11921.91	12014.69	11935.22	11923.80	11935.63	12036.15	12033.08	12046.10	11925.84	11849.07	47.46411	11/40.04 118/0 07	11026 00	11037 44	11926.88	11957.20	11932.73	11742.94	11831.83	11937.24	12000-02	11952.92
	LATITUDE		3325.89	3324.26	3323.45	3323.45	3319.67	3317.01	3316.08	3306.63	3301.10	3253.03	3319.03	3335.64	04.2000	41 . C#CC	3745 87	3337.86	3345.04	3329.94	3331.53	3332.77	3325.57	3354.70	3350.14	3317.22	3314.64	3312.19	3347.41	3309.48	55U6.90	10.8026	70 8022	3350 055	3351.79	3332.79	3358.02	3248.60	3322.57	3356.62	5540.10	3247.36
	TIME		1453.67	1455.17	1459.93	1501.12	1505.47	1519.92	1527.85	1543.30	1559.08	1614.70	1141.98	1038.42	0000	22 9101	22 3700	1420 271	0850.78	1205.70	1206.52	1541.83	1317.42	1339.65	1524.10	1059.97	1110.88	1234.18	1053.57	1016.52	C0. CUCI	10.7201	1202 1201	20-12CI	1450.08	1550.30	1503.72	0944.78	1026.97	0942.80	22.240	1512.12 1659.28
	DATE		940313	940313	940313	940313	940313	940313	940313	940313	940313	940313	940416	930123	521056	271066	4210C4	030130	930130	930131	930131	930131	930212	930212	930212	930306	930306	930306	930307	930312	950512	950512	01 1020	020501	020507	930509	930515	930516	930516	930528	930528	930529 930529
	TYP		0	0	0	0	0	0	0	0	0	0	s	۹.	0 0	2	L C	0 0	0 0	0	0	۵.	0	0	۵.	₽.	0	₽.	•	<b>.</b> .	۵. (	0 0	L C	<u>م</u> د	Ľ	0	0	0	0	0	0	0 4
	*																																									
	SPEC4																																									
	*			17																			98																			
	SPEC3			TT																			D																			
	%			16	17									4		¢	ø						-							34				Ţ	_	20	1					
	SPEC2			<b>BA</b>	6									LB			R						ΡU							H				ę	S	n f.	5					
(pan	%	t 1 1	8	67	83	8	8	8	8	8	8	8	8	96	8	88	2 2	38	38	88	88	8	-	8	8	8	8	8	8	66	8	88	38	88	\$ 2	38	32	38	8	8	8	88
8 (contir	SPEC1	• * * * * * * * * * * *	ER 1	ER	ER	ER 1	ER	ER	ER .	ER .	ER.	ER	ER	99	99	99	3	3	, . , .	, . , .	, 99 99	99	33	50	55	99	99	99	99	99	99	3	3	8	35	38		, ; ; ;	99	3	. 99	999
Table	#IS	1 1 1 1 1	966	266	998	666	1000	1002	1004	1005	1006	1007	1044	2	0	11	22	22	<b>†</b> 5	33	3.2	8 S	104	110	112	141	144	162	168	184	208	209	218	220	\$	24.2	275	200	201	307	309	321 335

						•																																				
	Ωį																																									
IMATES	4																																		c	ø						
T ESI	m ¦			65			38				47				ω			~	Ś	ñ	ទ	20													c	o				70	2	60
BES	~	20		65			38	ω			56				12			2	ŝ	18	<u>؛</u> ۲	1	80				27	ñ				22	2		c	o				11.0	2	40
	-	30	8	64	15	3	36	0	9	90 M	45		M	~	9	-	Ś	2	ŝ		8 i	31 1	130	M C	0	I	27	26	9	<u>6</u> ,	ורי	ب ۲	3,	o u	י ר	× ×	<b>t</b> t	8 8	n	001	36	εR
	OBS	٩C	Я	КF	RW	RW	Ŋ	ЧŻ	ŢF	К	11	٦٢	Ā	Ч	с Г	ŋ	g	Đ	<u>ц</u>	Я	9	7	<u>ج</u> ۲	2 5	2		д	SB	MA	Ă	29	33	K I I	± 5		¥ -	ן י	99	3	តិក	3 9	35
		11951.22	11929.29	12031.37	11903.60	11908.78	12021.31	11942.25	12010.22	12011.93	12006.53	11950.61	11942.30	11944.11	11936.50	11959.83	11943.20	11846.97	11849.52	11957.49	11959.05	12031.64	11900.89 11958 70	11850 72	11923.01	11919.86	11907.95	11907.80	11830.07	11822.23	12022.55	70.02U21	CO. C2U21	74 0.011	10.04411	120U3.14	60.20411	12056.88	120.00.04	11940.00 11055 AD	00 77011	12020.18
		3248.82	3354.05	3259.56	3252.78	3252.60	3329.79	3343.13	3345.91	3344.53	3335.89	3339.68	3335.51	3331.71	3330.76	3335.95	3337.23	3335.09	3336.16	3323.96	3322.87	3254.57	3327.82 2228 /0	7727 NO	3410.80	3401.12	3340.48	3341.10	3320.56	3317.12	57.1425	10-4CZS	20.4020	7250 67		C8-1C7C	14.7420	3306.67		5342-U8 2240-20	2211 02	3257.09
	TIME	1712.15	0920.00	1147.17	1123.63	1125.58	1529.45	1150.92	1436.93	1437.82	1622.13	1222.87	1426.08	1427.53	1058.87	1645.35	1459.87	1400.45	1406.22	1000.00	1011.37	1052.13	1332.47	1351 75	1105.82	1115.43	1443.13	1450.88	1140.60	1149.67	1024.20	1052.95	CC. /CUI	1510.40		20.7CUT	cu.ucul	1131.02	87.001	1222.43		1015.90
	DATE	930529	930529	930530	930530	930530	930619	930724	930724	930724	930724	930730	930730	930730	931002	931022	931120	931204	931204	931230	931230	931230	931231	03124	931231	931231	940101	940101	940108	940108	CL1076	340115	11044	CI 1046		940110	471046	940129	471046	940129	001070	940215
	d Y I	٩	0	٩	0	0	٩	0	0	0	٩	0	0	0	۵.	0	0	S	٩	۵.	S	۹.	۵. ۵	- 0	. 0	0	٩	0	0	0	ŝ	۵ ۵	ר י	<b>-</b>	<b>.</b>	<b>م</b> د	<u>о</u>	0 (	2	0 0	L C	00
	*																																									
	SPEC4																																									
	%	4																					15																			
	SPEC3	ZC																					ZC																			
	%	40		35																	46		16	22	3		30	80		20										ç	4	
!	SPEC2	00		6																	LB		Ħ	F	=		TT	Ħ		E											2	
	%	56	8	65	8	00	00	8	8	8	8	8	00	8	00	8	8	00	8	00	54	8	23	<u>s</u> r		80	3	20	0	80	8	80	B	8	3	8	8	8	8	80	8	38
	SPEC1	99	99	99	99	99	99	59	. 99	99	. 99	3	99	99	99	99	55	ខ្ល	55	99	9	. 99	ទទ	3 5	38	38	33	99	99	99	99	8	99	98	9	ទួន	99	99	99	ខ្លួ	5 C	38
	#1S	336	339B	347	351	352	358	392	306	397	415	511	516	519	563	591	622	648	649	697	698	200	28 28	80,2	747		766	792	812	813	814	815	816	819 200	820	823	825	829	830	833	200	65 865

Table 8 (continued).

	IMATES 4 5	8 8 8 8 8 8 8 8 8						41															6																		
	3 ST	1 1 1						47										۲	-	1	2 2	ł	0	~		22	66	7	۲ ۲	5 ¥	P									•	<u>_</u>
	BES 2						~	31	-	:					5		<del>ያ</del> የ	۲°	-	13	2 2	i	5	-		20	626	2 '	- 10	J X	3				31	21	1	₽¥	C K	29	2
	-	, , , , ,		9	12	9 1		ľ		-	0	4	12	35	ί Ι	2002	2	1 0	- 6	2 🖸	<u>ب</u> ر	1	0	-	2	47	8;	2;	= 2	77	5	4	2	15	31	21	M	2¥	с ц	3	10
	OBS	1	<u> </u>	3 1	L L	: 2	R,	II.	К,	Ľ	КF	TF	ų	Ŋ	۲ ۲	<u> </u>	<u> </u>	9 L	- 2	- #	: 13	9	ĶF	с Г	ц	ដ	<u>ပ</u> ု ဖ	5	79	35	L L	ΚF	χF	ц	RW	ទ	ğ	ត ត	29	2	C M
		1 1 1 1 1 1 1 1 1 1	11006 26	11913.14	11959.14	11958.48	12027.63	12027.12	11904.70	11826.08	11823.30	11752.24	11753.89	11806.76	11823.95	V0.0CVII	11944-06	120005 51	12018 85	12044 82	12059.64	11947 50	12052.60	12018.60	12021.47	12006.00	12018.58		11055 00	11940_97	11936.72	11945.20	12005.29	11931.96	11943.04	11937.42	11947.63	12032.24	11026 28		11045,27
			2310 06	3306.93	3355.21	3356.28	3310.13	3318.53	3353.24	3329.99	3329.10	3307.57	3316.89	3320.00	3317.01	21.7100 21.700 21.700	10.8000	02 CU22	02 7262	3224.42	3213.16	3310.40	3319.79	3248.46	3323.20	3335 .64	3328.92	10.4200	07-5255	3258-55	3301.47	3242.91	3324.45	3332.72	3337.58	3343.41	3249.22	3314.12 zzno 11	11.2000		3334 . 55
	TIME		1115 65	1133.58	1334.85	1341.75	1107.77	1457.25	1227.75	1455.52	1456.35	1508.38	1336.95	1400.60	1521.53		1410.90	07 2271	1454 07	1538.00	1349.05	1623.80	1451.88	1010.18	1020.00	1038.42	1016.33	CU.24CI	1610.55	1111.77	1409.08	1425.85	1550.02	1326.72	1557.77	1606.13	26. 2001	1106.55 1525 /5	1115 AD		1152.75
	DATE		040215	940215	940225	940225	940226	940226	940227	940227	940227	940227	940313	940313	940329	01 +0 +6	424046	7404C7	001010	940507	940523	940529	930731	931121	930123	930123	930124	021020	021024	930131	930131	930131	930131	930212	930212	930212	950506	930306 920206			930307
	ТҮР		c	0	0	0	s	٩	٩	0	0	0	0	0	۰. ۵	r (	5 0	0	. c	s S	٩	0	0	s	<b>م</b> ،	<u>م</u> ۱	<u>م</u> ذ	0 0	۵ ۱	. v	0	0	S	0	Δ.	<b>a</b> . (	in o	s o	- 0		۵.
	%																																								
	SPEC4																																								
	%																																								
	SPEC3																																								
	*						ß						ł	87	6	ř	77	F				9			2	88	24	12	1						,	<b>`</b>			-		20
	SPEC2						9								-	2		3				ГВ			0	99	99	ga	5						1	3			01		<b>6</b> 8
(pənu	~		100	00	8	100	20	00	8	8	8	8	8	28	35	2 2	3 6	58	8	8	8	8	8	8 3	8`	4 0	β	38	38	8	8	8	8	83	83	3 2	38	38	38		2
3 (conti	SPEC1		99	99	99	99	99	99	9	99	55	3	3	98	3 5	3 2	3 3	3 5	39	39	59	99	5	8	8	8	9 g	3 4	3 8	L8 1	LB 1	LB 1	9	ГВ 1	- -	2		 9	3 5		8
Table {	#IS		867	869	887	888	905	922	958	963	964	965	986 200	065	10/5		1051	1055	1058	1077	1087	1106	538	679	- r	N C	2 8	₹ 8	65	58	78	62	8	105	116	120	201	163	171	F.,	27

Table 8 (continued).

Table 8	3 (cont	inued														BES.	r esti	VATES	
#1S	SPEC1	*	SPEC2	*	SPEC3	%	SPEC4	%	TΥΡ	DATE	TIME		ONGITUDE	OBS	-	2	m	4	ر ۲
	1	1	1 1 1 1 1		- - - - - - - - - - - - - -		1 1 1 1 1 1	1 1 1 1		, , , , , ,									
	-	001							c	030312	1138.57	3345.74	11931.99	ŋ	800	725			
		<u></u>	22	C	2	~			<u>م</u> د	930509	1113.53	3256.76	12020.27	RW	20	ß	23	35	
0,2	9 9		3	6	3	-			. a	930509	1703.73	3302.24	11951.17	ц Ч	2	2	4		
	9 9	S R	2	27					. 🋆	930528	1547.15	3253.74	12032-64	д	19	20	18		
500	20	25	3	5					. <u>a</u>	930529	1051.90	3327.67	12047.58	ΚF	470	220	1050		
	9 9	8							<u>م</u>	930529	1124.67	3326.52	12041.68	90	Ъ	27	К		
510	2 2	36							. ი.	930529	1535.30	3335.82	12022.14	Ŗ	8	9	0		
0,5	9 9	3 5	00	Υ Υ					۰ ۵	930530	1147.17	3259.56	12031.37	КF	64	65	65		
24C	2 9	<u>, 5</u>	22	3					. ൧	931023	1116.62	3253.30	12040.99	Ξ	2	2			
040	2 2	36							. v	931205	0941.42	3318.70	12005.47	ŋ	\$	ω			
	<u> </u>	35							0	931205	0959.72	3323.39	12010.68	TF	ø				
c/0	2	<u> </u>							۰ <b>م</b>	931205	1119.47	3320.24	12000.44	ŋ	ŝ				
000	2 2	001 7	99	75					. v	931230	1011.37	3322.87	11959.05	٩	80	R	20		
708	3 =	₽ ₩	38	29	BP	ę	ZC	-	٩	931230	1537.33	3257.00	11942.67	Ч	130	80	180		
787	3 =	001	•	5					0	940101	1008.57	3245.57	11929.86	Ē	2		ł		
028	3 =	5	99	88					۵.	940129	1452.73	3249.39	11955.40	5	00	140	8/		
878	3 =	2 R	22	?~	ER S	15			0	940215	1117.95	3306.48	11911.50	9	M 1	54			
000 778	3 =	100	ì	•	i				٩	940225	1242.73	3332.82	12006.78	Ξ	ŝ	Ω.			
3 8 YO	3 🖆	88	ZC	<b>~</b>					•	940313	1015.68	3329.01	12007.75	15	200	200	110	188	
1045	3 4	5	3	9					۵	940416	1154.30	3317.13	11956.69	5	3300				
1051	3 🖆	77	39	22					0	940429	1416.58	3306.51	12000.12	87 87	20	ŝ			
1106	1	; =	99	8					0	940529	1623.80	3310.40	11947.50	97			ļ		
3 K	3 9	100	2						۵.	930124	1130.77	3242.72	11956.70	Ŗ	9	9	ς; ζ		
ן א ג	3 9	80							s	930124	1223.15	3325.49	12046.00	ц Ч	2.	ß	9°		
ንደ	20	10							٩	930130	0953.97	3244.34	12013.80	μ Γ	4 000	ŝ	ν		
164		9							٩.	930306	1602.70	3245.30	12018.84	9		2			
171	2	-	LB	8					٩	930307	1115.60	3342-53	11936.28	₽ i	8 8	2	r	٢	
223	2	100							۵.	930410	1134.23	3255.80	28.44/11	52	4 6	й t	2 10	- u	
256	2	~	8	ŝ	8	8			۵.	930509	1113.53	5256. 76	12020 27	X I	25	Ĵ o	3	'n	
292	2	78	ZC	23					<u> </u>	930521	1048.78	5555.81	11819.40	- 2	20	0			
299	2	100				ł			۵, ۱	950520	1440.00	24. JUCC	20 00001	23	14	12	11		
326	2	50	ZC	<u>م</u>	8	2			י ב	4200CA	1044.90	20,0000	12067.04	2 1	r ru	ir			
330	2	82	8	20					2 (	420004	CD.0001			2 2	<b>ب</b> ر	٠Ę	• œ		
343	2	50	<b>8</b>	5					5	000000	1014.90	2355 80	11038 20	3 5	ې ۲	2	2		
353	2	84	ZC	16					<b>-</b>	910059	10-1011	20.020	119-00-67	2	, r	3	2		
354 .	ם	86	ZC	14					s c	950619	114/.4/	14.0020	11051 85	К Д К Ц	- ∝	1			
378	Ľ	100							<b>~</b> (	+21004		20 0022	11053 00	2	9 14	N			
382	Ľ	67	BM	33						95U/24	71.1.17	70 1122	11956-05	2 7	סיו	° ₽	10	9	
447			1	ļ						02020	27 7701	3311 35	11956.78	ц Ч	M	M			
448	33	2 2 2	72	3.					o v	030725	1118.33	3341.33	12017.13	Ξ Σ	36	55			
<u>;</u> ;		2 2	3 2	. N					<u>ہ</u> د	930725	1136.28	3332.78	12006.34	ΤF	11	19			
402 529	17	2.23	32	- 38					. 🕰	930730	1555.77	3311.22	11948-64	ΚF	23	8	13		

'n																																												
IMATES 4	5 3 3 8 8 8	13	6																																									
EST 3	1 1 1 1	0	2	38	4		0				14		38	r																														
BEST 2		ø	0	45	4	55	20	5			15	N	80	88		-		17	<b>e</b>																		Ļ							
-	1 ; ; ; ;	10	80	18	4	37	14	9	80		18	2	85	400	9	-	F	2	۲	•	-	•	-	-	2	-	-	-	-	و	-	•	<b>e</b>	-	<b></b>	-	<b>e</b> ,	-	-	-	-	•	-	-
OBS	1 5 1 1	ΤF	ΤF	5	с Ч	ç	КF	КF	SB	SB	M	ц,	95	75	M	ΤF	КF	ų	с Г	ΤF	ŋ	11	ų	S	님	Ц	ŋ	ч Ч	ŋ	ð	R	L F	Ð	15	КF	ΤF	ΤF	ų	КF	Ŋ	5	КF	Ę	ЪG
LONGI TUDE	1 1 1 1 1 1 1 1 1 1 1	12005.17	11922.63	11918.35	11918.40	11855.27	11838-52	11840.49	11831.54	11831.45	11952.00	12024.23	12044.43	11816.11	12034.37	11844.07	12028.21	11957.20	11956.75	12001.57	12009.91	12042.99	12036.46	12028.80	12005.54	11959.85	12008.35	12015.86	12002.00	11951.46	12045.72	11955.12	12021.33	11958.54	12017.66	12012.07	12037.67	12007.93	11758.93	12029.83	12034.42	11929.78	12055.80	12010.78
LATITUDE		3337.00	3338.86	3349.91	3349.92	3316.67	3302.75	3305.70	3325.11	3322.95	3315.18	3333.98	3310.85	3303.91	3233.87	3254.39	3339.08	3332.79	3331.37	3308.57	3315.79	3318.70	3310.64	3317.04	3256.68	3329.21	3307.01	3313.65	3247.72	3312.70	3305.47	3315.52	3337.82	3326.38	3326.60	3250.21	3309.86	3254.00	3309.03	3325.21	3255.70	3334.42	3318.56	3323.01
TIME		1205.10	1046.25	1436.02	1510.47	1447.92	1006.45	1300.78	1412.57	1540.52	0952.68	1223.45	1206.48	1321.08	1638.58	1115.22	77.7760	1550.30	1550.95	1037.03	1048.37	1540.38	1614.22	1621.42	1101.23	0916.27	1025.93	1031.55	1136.70	0937.02	1623.65	1052.57	1408.73	1033.78	1133.72	1114.37	1508.03	1449.07	1538.20	1059.53	1101.13	1353.62	1055.43	0952.50
P DATE		931120	931204	931204	931204	931205	931231	931231	931231	940101	940116	940225	940226	940507	940529	930530	930724	930509	930509	931016	931016	931016	931016	931016	931022	930124	930306	930306	930306	930509	930529	7280827	951121	931205	931230	940129	940226	940313	940329	940416	930130	930131	931024	<b>431205</b>
% TY		۵.	٩.	<u>م</u>	α.	₽.	•	۵.	0	0	s	S	٩	٩.	0	0	0	0	0	۹.	٩	0	0	٩	٩	۵.	۹	۵.	α.	S I	۵. ۱	a. 1	S I	α.	s	Φ.	۹.	0	۵.	۹	<b>م</b> ا	0	0	ŝ
SPEC4																																					•							
*								5					:	ň																														
SPEC3								đ					8	ZC																														
*							ß	34 34	20		43		54	38				80																										
SPEC2							ZC	£	Z		ZC		z	8				3																										
*		001	8	81	8	2	22	ω	20	8	57	8	65	69	8	8	8	20	8	8	8	8	8	8	8	8	83	8 3	8,8	38	38	38	38	38	B	8	8	8	8	8	88	83	38	3
SPEC1		2	2	<u>ן</u> ב	2	2	2	2	2	2	2	2	2	9	2	2	Ľ	3	3	EN .	E	E	3	3	3	W	W	A H	L W	MA	A A	A H		AM .	L AM	MA 1	MA 1	1 AM	MA 1	MA 1	Ŧ	E N	Ĩ	E E
#1S		621	647	700	202	685	720	723	746	782	822	870	910	1073	1108	350	431	262	263	269	220	274	52	229	212	2	134	2	5		2				22	828	924	976	1022	1032	5	2	22	7/0

Table 8 (continued).

.

BEST ESTIMATES

ŝ	1 4 1																																											
4	1 F F F F F																																											
ŝ	4 4 9					4	-	~						2	4										~	L									10								ŝ	
2 N	1 F 1 1				2	4	2	2		9			8	2	4						м	ז			~	л с	u				งบ	h	M	,	9							m	ы	
•	t 7 1							~ 1					~															<u> </u>				-			~	_	~			_	_	~.		
-	1 1	<b>C</b>	11	<b>.</b>		1 19	-		-	Ű	Ē	-	ω.		7	7					) P		- 14					, f		<u> </u>		2 2			°.	•			•	•				2
OBS	1	ΤF	ΤF	КF	BL BL	5	<u>с</u>	КF	с Г	Å	Ч	ÿ	2	ц Ч	ÿ	27	na	M			2 <u>-</u>	9 LI 7 F	<u>-</u> -	2	2 -	3 5	3.5	ר ר ר ר	2 3	23	23	24	39	Ϋ́	ML	ц Ч	Ţ	≓	QW	Å	Ŗ	КF	КF	5
TUDE	r 1 1 1	8.66	6.11	5.84	3.74	6.93	8.43	0.86	4.57	1.47	3.55	6.03	6.68	14.70	2.32	5.09	1 07	07 Y	22		14.0		202	28	3.0	5	- 2	0.0		2.0	<u> </u>	10.4	10	1.35	3.17	14.64	5.51	4.18	3.38	4.36	3.56	7.50	33	.0.9
LONGI	1 1 1 1	1200	1190	1193	1175	1202	1194	1195	1195	1202	1202	1194	1192	1190	1191	1185	12001	1101		102	101		110/1		2 5			105				118/	110	1203	1201	1180	1182	1183	1182	1183	1183	1174	1204	1202
UDE	1 1 1 1	.38	8.	<u>.</u> 85	-21	5.	.17	.08	.17	8.	8	58		5	6	5	12	2	5		2 4	- -	, r	3 2	15	<u>,</u>	48	8 k	Ç F		<u>,</u>		26	285	07	67	۴	5	8	46	14	-28	2	.36
LATIT		3334	3331	3408	3256	3249	3257	3259	3326	3352	3339	3356	3344	3311	3312	5333	7221	2210	2210									200		2210			2255	3326	3338	3318	3327	3323	3317	3323	3323	3305	3323	3235
ш		-52	.58	47	.37	2	- 68	48.	.20	.33	62	2	8	8	2	2	ő	2	3 4	2 6	2 2	3 8		Ŗ		<u>}</u>	8	25	ŝ	25	ç, P	0 ų	6	20	.58	12	6	10	۴	23	.47	8	-62	5.
TIM		1021	1209	1410	1740	1109	1440	1449	0922	1123	0914	6760	1104	104	1048	1032	200	2001										140	222	220			12121	1034	1035	1358	1421	1459	1521	1516	1516	1544	1213	1025
ΠE	1 1 1 -	205	1227	227	507	130	131	131	12	313	131	307	202	312	312			212				2024	<u>.</u>	302				58		22	20		200	1226	313	313	313	313	313	329	329	329	124	1022
DA		931	940	940	940	930	930	930	930	076	930	020	020	026	020	020			220				2 2		2 2	2	25	2 2	2	2	2	29		076	170	940	076	640	176	940	940	940	930	931
TYF	1 2 1 1	٩	٩	0	0	۵.	۵.	۵.	0	0	<u> </u>	. C		) Q	. 0	. c	• •	- 0		r c	2 0	L 2	20				2.6	2.0	2 (	5 0	י ר	rο	ם כ	. o.	. ۵	0		0	C	0	0	۵.	۵.	0
%																																												
PEC4	1 1 1																																											
% SI	1 1 1																												- 7			ţ												
ю	1 1 1 1																														ŗ	n X												
SPEC																															,	11												
%																															(	x						20	3					
SPEC2	, , , , ,																															2						ä	5					
%	5 1 1	Q	88	8	8	00	00	00	8	88	88	88	38	38	88	88	38	BB	38	38	38	38	38	38	38	33	8	8	8	8	8	2 2	Big	38	88	38	88	3 5	: 2	38	8	8	8	8
SPEC1		MM	WW	W	MN	8	00	0		88	8 6		2 8	2 6		2 2		28	2 1	e e	2	6 1	2 2	2 8	od 1	DO	PO	PO	L Od	2	PO	e 8	2 8	2 8		2 6		2 8	26	2 6		6 6 7	P M 1	F Md
#1S		474	676	959	1079	32	81	8	10	070	1 1	14 J	0,1		000	212				087 780	887	558	109	170	64/	( ( (	668	683	696	696	102	522	010		070	080	600	244	2001	1010	1020	1023	54	5778

42

Table 8 (continued).

apte	ט (כסוור	Juner														REST	FSTI	MATES	
#IS	SPEC1	*	SPEC2	*	SPEC3	%	SPEC4	%	ТҮР	DATE	TIME	LATITUDE		OBS	-	2	n N	4	'n
8 8 8 8 8 8		1 · · · · · · · · · · · · · · · · · · ·																	
620	Md	100							<u>م</u>	931120	1128.57	3305.50	12042.52	TF	2	2	•		
898	M	9							<u>.</u>	940226	1025.02	3322.01	12025.86	Ъ	-	-		•	
904	Md	100							۵.	940226	1101.67	3311.70	12029.94	ΤF	<b>6</b>	<b>~~</b>			
926	Md	100							۵.	940226	1508.97	3308.81	12038.88	ЧЧ	9	ŝ			
626	Md	100							0	940313	1507.55	3304.48	12037.24	Å	26	17	16		
980	Md	100							0	940313	1517.68	3301.81	12034.31	Å	-	-			
981	Md	100							م	940313	1525.18	3300.16	12032.18	ž	• •	12			
982	Md	100							0	940313	1539.22	3251.41	12021.27	X	~	M			
1011	đ	<u>6</u>							۵.	940329	1218.93	3321.29	12001.79	5			-	<b>4</b>	
1047	Md	100							0	940429	1130.55	3205.02	12054.57	Ч	~				
14	P	100							٩	930124	0948.37	3301 69	11945.45	Ŗ	-				
68	Ы	100							0	930131	1225.50	3403.00	11918.56	RW	-				
69	Ы	100							o	930131	1225.90	3403.76	11918.06	۶	-				
2	Ы	<u>1</u> 0							0	930131	1339.97	3405.21	11919.18	КF	<b>,</b>				
104	Ы	. <b>-</b>	8	98	99	-			0	930212	1317.42	3325.57	11935.22	RW	1217	1200 2(	<b>09</b> 0		
114	Ы	100							٩.	930212	1547.47	3330.82	11949.63	RW	20				
777	P	100							م	940101	1516.72	3329.86	11855.92	КF	2				
864	B	100							۵.	940215	1012.63	3253.58	12016.05	ដ					
915	P	100							٩	940226	1220.55	3321.24	12057.23	JG	-				
1059	Ы	100							۵.	940506	1500.82	3241.06	12020.20	μ	-				
604	P۷	100							٩.	931023	1547.02	3318.22	11956.37	ÿ	-				
707	۲	100							۵.	931230	1500.65	3311.89	11947.74	Ŗ	<b>e</b>				
733	Ъ	100							۵.	931231	1330.80	3325.09	11859.37	КF	-				
780	۶	100							۵.	940101	1526.63	3328.63	11841.20	КF	-				
1102	SC	5	8	85					۵.	940529	1442.60	3207.06	12047.40	۶	400	450 3	50	320	
26	ß	100							0	930124	0939.55	3257.80	12003.70	КF	ω				
225	S	100							0	930410	1307.75	3400.37	11912.57	٩C					
234	ខ		39	8					۵.	930501	1616.10	3359.05	11937.44	5	16	16	<u>1</u> 5		
306	SD	100							0	930528	0938.40	3403.55	11925.74	ΚF	50				
344	ß	100							۵	930530	1041.50	3243.95	11957.46	9	10				
346	เรา เ	99							0	930530	1115.15	3316.01	12034.54	9	150				
363A	ß	00							0	950619	00.5060	5249.00	11/45.00	¥	I				
3630	ß	3							0	930619	0932.22	3247.90	11840.39	КF	m				
384	ß	100							0	930724	1137.28	3324.09	11951.89	Ŗ					
394	S	9							0	930724	1158.68	3358-03	11925.76	ΤF	250				
408	S	<b>1</b> 00	•						۵.	930724	1549.87	3312.58	12033.66	Ŗ	m				
421	ß	9							0	930724	1636.02	3330.99	11957.72	٦۲					
430	ß	100							0	930724	0944.87	3343.92	12021.51	ÿ	0				
444	ß	100							0	950725	1034.87	3307.29	1199-1-691	КF	'n				
512	ទ	99							0 0	930730	1233.22	3401.60	11929.22	¥ ¦	30	12			
22	7	39							<b>.</b> .	001004	CC.0241	+0-+ccc	11045.54	L 1	•				
1075		<u></u>							نه د	940507	1355 30	3309-67	11859.55	¥ 14	- ^				
22	2	> >				,			•	->>>>	) } = 1 } ] =			-	ı				

í

ont inued)
8 (CC
Table

ŝ	}																																											
IMATES 4																																								~	J .			
T EST 3	1 1 1 1		m	35				l	~										500																				۴	- ^	ı			
BES.	1		4	8	20	ļ	27	о М	~										275	i											~								÷	- ~	ı			
-	1 1 1 1	<b>~</b> ~	m g	82	150	γļ	27	56	ſ	16	100	32	3	\$	<b>e</b>	-	-		600 1				M		_	15	4		•		2	40	-	Р	60	100	50	15	•	• ~	/ <b>«</b>	·	2	۴-
OBS		ç	g :	93	5	7 ;	¥	88	Ч	Ч. Т.	M	ч Ч	Ŷ	£	ŋ	ц	SL	96	с Г	9	ð	MA	ΤF	Ľ	Ľ	5	Q	MA	g	ΤF	КF	ĶГ	ч. Н	B	٩	ВĻ	ЪВ	8	5	97	Ľ,	Ϋ́	KF	JG
LONGI TUDE	1 1 1 1 1 1 1 1 1 1 1 1 1 1	12016.99	12051.08	11849-07	11900.89	27.06811	26.70611	11907.80	11904.03	11852.39	11822.23	11806.76	11816.33	11834.11	11930.86	11949.29	12017.22	11919.25	11922.29	11929.91	11954.99	11807.05	11952.18	11956.59	12016.15	12055.56	12019-00	11837.16	11831.91	11902.16	12027.63	12017.55	12017.02	12021.19	12024.28	12029.29	12030.66	12046.07	12003.80	12052.75	12034 51	12013.82	12055.00	12030.29
LATITUDE	1 1 1 1 1 1 1 1 1 1 1 1 1 1	3247.12	3327.98	5509.48	28.1266	60.72cc	5540.48	5541.10	3333.42	3335.31	3317.12	3320.00	3321.91	3324.26	3334.43	3256.43	3326.86	3351.30	3356.73	3334.27	3255.46	3247.31	3324.27	3309.61	3340.58	3319.90	3247.97	3326.59	3322.13	3311.35	3310.13	3243.66	3248.80	3301.15	3256.98	3248.62	3246.63	3221.88	3323.36	3217.39	3335.90	3250.50	3319.30	3308.88
TIME	1 1 1 1 1 1 1 1	1205.13	1202.12	7C-0101	14.2001	0.1001	1445.15	1450.88	1507.35	1112.75	1149.67	1400.60	1411.90	1455.17	1057.62	1017.72	1608.15	1217.53	1220.82	1353.75	1016.03	0935.75	1555.03	1030.22	1123.33	1044.97	1019.33	1438.85	1129.38	1113.97	1107.77	1006.80	1507.63	1546.18	1548.22	1552.22	1553.13	1643.78	1430.75	1503.85	1526.77	1652.93	1027.53	1515.68
DATE	1 1 1 1 1 1 1 1	930306	930529	212026	12106	107106	101046	101044	940101	940108	940108	940313	940313	940313	930131	930724	930724	930131	930131	930131	930306	930312	930509	930725	930725	931024	931121	940108	940108	940215	940226	940226	940506	940506	940506	940506	940506	940506	931121	940529	930131	940523	930130	930130
ТҮР	1 1 1 3 1	Δ.	0 0	2 6	ר נ	<b>1</b> (	<u>а</u> (	0 1	<b>0</b> . 1	0	0	0	0	0	0	0	ò	0	0	0	0	0	0	0	<u>م</u>	۵.	0	0	0	0	S	σ	۵.	0	0	0	0	٩	٩	۵.	0	٩	٩	۵.
*																																												
SPEC4	1 1 2 2 5 5 5 5 5																																											
*	* 1 1			ĥ	2								;	16																														
SPEC3	1 4 1. 1 1 1 1			č	Ċ								i	BA																														
*	1       			84	<u></u>	i 6	2 8	R		ł		2	ļ	20																	2	20												
SPEC2	1 1 1 1 1		ç	3	2 8	38	33	3		1	9	33	ł	H																	ទួ	ZC												
*		100	Bi	3 2	2 ₽	3 8	28	S S	91	8	23	28	<u>8</u> ;		8	100	100 1	<u>1</u> 0	<u>1</u> 00	<u>1</u> 0	9	<u>6</u>	8	8	100	<u>6</u>	8	00	8	8	ß	80	100	00	8	8	00	8	00	8	8	8	8	8
SPEC1	8 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	MS	ZS	= :	= ;	= ;	= ;	= 1	EI		EI	E		H	9	80	85	3	3	3	3	3	9	3	9	5	3	3	3	3	3	9	3	5	3	3	5	8	MO	Ň	, sn	, SU	3	M
#IS	5 1 7 1 5 4	156	220	104	22	147	8	è	22	808	815	2	166 162	Š	8	3636	410	65	67	r	133	210	265	441	457	611	630	296	811	866	905	933	1062	1067	1068	1069	0201	1072	639	1103	91	1094	30	35

able {	3 (conti	nued														BEST	ESTIMATI	S
#	SPEC1	*	SPEC2	%	SPEC3	%	SPEC4	%	۲۲. ۲۲	DATE	TIME	LATITUDE		OBS	-	2	3 4	2
~	3	<u>8</u>							0	930212	1329.68	3338.79	11930.37	RW	•			
0	3	100							۵.	930507	1406.77	3356.58	11911.34	ΤF	2			
.+	3	100							0	930529	1034.13	3316.44	12058.28	g	-	•	<b>,</b>	
_	ß	100							۵.	931121	1038.37	3302.64	12034.88	ê	-			
_	ŊŅ	100							۵	340108	1053_72	3324 82	12037_00	N	-			
	33								. c	201010	122/ 15	7275 76	110E0 EL	<u> </u>				
	53	3							5.0	27010	CI - 47CI	07.0400	4C.0C411	5	- 1			
^	3	100							0	905046	1542.68	5501.95	12016.50	¥	ŝ			
~	MB	100							٩.	930516	1614.50	3242.46	12030.60	5	Ś			
~	WB	100							0	930619	0929.33	3248.03	11830.85	Ч				
	3	100								762020	1025 22	3253 40	11038 00	F				
	g	86							 	72020	1023 88	3256 61	110/1 13	1 1				
	2	80							) c	22020	1128 70	2226 20	11051 17		70			
	8	3							5 0	47 JOCA	110011		11.10411	L 1	85			
~ .	8	001							0	750724	14-54.65	74.8455	12004 44	Ľ,	001			
_	8	100							0	930724	1635.10	3332.63	11959.18	ц	œ	0		
~	MB	100							0	930724	0931.97	3356.42	11942.93	Υ.	80			
~	8	100							õ	730724	0934.22	3354.05	11949.54	КF	20			
	<b>8</b> M	100							<u>م</u>	730725	0958.33	3326.26	12030.74	КF	9	30	ø	
_	MB	100							0	330725	1025.52	3314.69	12008.08	КF	15			
•••	WB	100							0	730725	1030.60	3309.22	11955.77	KF	m			
	WB	100							0	30725	1031.35	3308.33	11953.71	ΚF	10			
	84	100							۳ 2	30725	1036.03	3308.79	11953.86	KF	4	~		
	R.	100							0	730725	1419.60	3322.31	11949.54	SL	10			
	MB	100							0	730725	1422.42	3318.75	11955.96	Ŧ	45			
	WB	100							0	740529	1524.00	3245.00	12024.00	КF	150			
_	ZC	100							0	730123	1526.67	3237.46	12011.40	KF	•			
	ZC	10							۳ 2	730123	1545.85	3306.00	11940.00	КF	-			
	ZC	100							ۍ د	30124	0944.93	3257.58	11940.70	КF	-			
	ZC	100							4	30124	0951.98	3303.89	11948.16	KF	<b>e</b>			
	ZC	100							s s	30124	1000.07	3312.78	11958.61	ų	-			
	ZC	100							s	30124	1005.68	3318.20	12005.42	ŋ	-			
_	ZC	100							ۍ م	30124	1015.63	3328.12	12017.45	9	•			
	ZC	100							s	30124	1030.73	3336.18	12032.80	КF	۰			
	ZC	100							4	30130	1541.60	3324.20	12013.20	Ч	~			
	ZC	100							. 0	30130	1603.85	3330.27	11958-42		· ~			
	ZC	100							0	30131	0912.52	3342.27	12025.41	2				
	ž	10							. o	30131	0941.38	3314.83	11952.00	3				
	ZC	100							ۍ د	30131	0953.32	3303.51	12005.76	Ч				
	ZC	100							۵ ۵	30131	0955.33	3301.18	12008.31	JG	-			
	ZC	<u>1</u> 0							ч С	30131	1000.77	3254.50	12016.25	KF	***			
	ZC	100							ۍ د	30131	1009.77	3243.75	12028.82	ц	Ļ			
	ZC	<u>1</u> 0							s S	30131	1011.93	3241.17	12031.90	с Ч	-			
	ZC	<u>1</u> 0							0	30131	1015.30	3237.87	12030.96	<u>л</u> с	-			
2	ZC	100							s S	30131	1046.32	3252.05	12002.96	ក	-			

S	3 m i																																											
BEST	~																																											
	-	-	•	2	<b>6</b>	9	-	-	-	-	-	N	m	~	-	-	-		. <b>.</b>	-	-	<b>e</b>	<b>~</b>	<b>e</b>	-	-	-	-	<b>.</b>	-	~	ę	-	-	9	9	•	<b>-</b>	•	•	-	<b></b> ,	- +	-
	OBS	ΚF	ŋ	ŋ	Ŗ	ΚF	КF	ŋ	ΚF	KF	Ъ	К	Ŗ	g	КF	ų	9r	, c	9	96	5	с С	ŋ	RW	Ŋ	5	9	٩Ċ	ŋ	с,	Ŋ	g	g	ŋ	ŋ	ΤF	9	ŋ	ŋ	g	βĻ	9	<u>م</u> د	5
		11952.16	11955.55	11937.38	11939.48	11935.90	11938.33	12000.76	12003.35	12008.41	12011.31	12011.73	12016.35	12017.03	12028.82	12025.11	12024.65	12020.72	11952.39	11951.42	12029.41	12032.51	11950.72	11943.87	11954.07	12004.94	12019.63	12026.67	12036.11	12042.74	12039.59	12033.88	12032.16	12029.57	12029.18	12028.12	12018.50	12002.51	11959.22	12003.88	12020.35	12022.29	12027.28	07.3602
	LATITUDE	3248.39	3245.08	3247.69	3319.34	3305.33	3244.88	3307.62	3310.14	3314.34	3316.72	3317.17	3321.06	3321.57	3331.31	3341.35	3340.81	3337.96	3313.73	3312.71	3318.12	3320.42	3340.66	3336.75	3305.24	3253.42	3316.79	3322.34	3330.42	3322.78	3320.23	3315.32	3314.02	3311.53	3311.21	3310.26	3302.06	3248.12	3245.36	3238.03	3249.82	521.59	5200.44	
	TIME	1123.50	1126.02	1141.40	1400.80	1407.50	1429.75	1501.18	1503.37	1507.15	1509.27	1509.62	1513.17	1513.63	1522.52	1534.27	1534.75	1537.43	1603.85	1604.67	1155.25	1157.50	1536.77	1557.10	1057.27	1106.13	1034.13	1038.73	1044.97	1055.23	1057.48	1105.47	1114.90	1116.85	1117.10	1117.93	1124.75	1136.35	1138.67	1156.42	1215.50	1216.95	24.0221	10.4221
	DATE	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930131	930212	930212	930212	930212	930213	930213	930306	930306	930306	930306	930306	930306	930306	930306	930306	930306	930306	930306	930306	930306	930306	950306	950506	סטכטכע
	TYP	s	۵.	۵.	0	0	0	٩	٩	٩	۵.	م	۵.	٩	٩	٩	۵.	۵.	<u> </u>	<u>م</u>	S	s	م	۵.	s	٩	٩	S	s	ŝ	s	٩	٩	م	۵.	۵.	٩	٩	۵.	0	۵.	۵. ۱	<u>م</u> د	r
	*																																											
	SPEC4																																											
	*																																											
	SPEC3																																				•							
	~																																											
	SPEC2																																											
nued)	*	0	0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	88	BB	3
3 (contil	SPEC1	ZC	, Z	, ZC	ZC	, ZC	, DZ	ZC	ZC	ZC	ZC 1	ZC	ZC	ZC 1	ZC 1	ZC 1	ZC	ZC	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	zc 1		ZC 1	- 
Table {	#IS	29	60	61	£	1	80	83	84	85	86	87	88	89	90	92	93	64	26	8	101	102	113	115	122	123	136	137	138	139	140	142	145	146	147	148	149	150	152	154	157	80	941 041	201

~
σ σ (λ)
ď
ŝ
<b>Q.</b> 1
Δ.
<b>a.</b>
<b>e</b> . 1
α.
<b>Q.</b>
<b>a</b> . 1
<b>d</b>
0
•
<b>a</b> . (
<i>.</i>
<i>.</i>
<b>.</b> (
<b>.</b>
1 02
<b>a.</b>
α.
<b>d</b>
S
0
<b>e.</b>
S
0
•
Δ.
α.
α.
•
- 0
<u> </u>
<b>a</b>

1	<u>ہ</u>																																													
MATES	4		2	ñ																																										
ESTI	m		Ċ	ñ	¥¥	8																															:									
BEST	2		ľ	2	77	2																				ß		м									12							20		
	-	ę	- <	4 C	ימ	9-	- •		-	•	-	ę	•	-	9	-	-	~	•	• •					;	10	-	m	M	<b></b>	•	10	-	-	-	-	14	~		•	-			М		-
	OBS	ī		- H	<u>-</u> -		2 2	De l	RW	윷	RW	ÿ	ų	с Г	с Г	27	MM	JG.				3 5	3	ם י	5	ΤF	ΤF	9 <b>0</b>	Ж	15	g	ŋ	g	4	КF	٩C	ĶΓ	КF	ΤF	θľ	1	: "	K R	٥Ľ	5	Ę
	ONGITUDE	00 11011	11411-00	11842.40 11840 75	11877 18	11057 53	20.10411	11949.21	12029.79	12034.48	12046.00	12019.04	12004.51	11953.99	11934.70	12004.57	12004.82	12005.10	12005 04	12017 35	12018 72	12005 /5	C4. C2U21	0/.56411	12050.72	11819.40	11818.25	11955.73	12007.39	12008.81	12014.72	12058.24	12043.79	12012.72	12015.54	12019.98	12029.04	12036.19	12036.48	12036.84	12015 66	12014 34	11055 62	11951.22	12014.03	12003.79
			11.0000	5524.9U		0/ 1000		520.025	3304.74	3308.93	3318.94	3318.86	3310.81	3259.75	3357.92	3317.49	3317.77	3317.98	3318 71	7728 15	2220 08		C) . #CCC	5248.21	3315.86	3333.87	3336.34	3325.14	3334.70	3333.57	3328.94	3313.18	3324.55	3343.33	3341.27	3338.02	3330.06	3324.21	3323.95	3323.57	2220 68	2728 A5	2244.00	3248.82	3312.09	3249.43
	TIME	00 00 00	14-26.20	1015 42			04-0440	c/./401	1134.47	1137.78	1145.63	1534.37	1612.58	1701.73	1502.90	1014-02	1014 23	1014.48	1015 10	1024 82	1025 72		10.001	1112.45	1156.55	1048.78	1108.07	1629.38	0956.87	0957.80	1002.17	1032.83	1129.12	1523.05	1525.18	1533.52	1544.98	1559.63	1559.85	1600_08	1646 03	1645 87	1657 52	1712.15	1007.37	1052.77
	DATE	202020	702020	950508		000000	601010	930509	930509	930509	930509	930509	930509	930509	930515	930516	930516	930516	020516	020516	0100020	010004	010000	91 CUSA	930516	930521	930521	930528	930529	930529	930529	930529	930529	930529	930529	930529	930529	930529	930529	02050	0202020	0205050	030520	930529	930530	930530
	dγΓ	6	<b>.</b> .	۹ ۵	L (	<b>،</b> د	ה מ	۹.	٩.	٩	٩.	s	٩	٩	0	٩	•	. v.	0	- 0	- 0	<b>,</b> ,	n	<b>a</b> .	۵.	٩.	۵.	۵.	٩	٩	s	0	۵.	0	٩	s	۵.	۵.	۵.	C.		<u>م</u> ر		۰ a.	S	s
	%																																													
	SPEC4																																													
	%																																				20	l						07		
	SPEC3																																				ГО							aa		
	%			66	8	\$																				82											2	!						56	)	
1	SPEC2			00	ć	00																				2											a							99	1	
	%		00	- 6	3.	- 6		100	100	100	100	100	100	100	100		100	36	201	26	36			100	<u>1</u> 0	ង	10	100	100	100	100	90	100	<u>6</u>	100	100	0	100	19			35	36	7	100	100
	SPEC1		ZC	ZC	38	31	ZC	ZC	SC	ZC	ZC	ZC	zc	ZC	20	22	12	32	3 5	3 5	, r	3 8	21	ZC	Ŋ	z	ZC	ZC	ZC	ZC	ZC	ZC	ZC	22	Z	ZC	ZC	zc	zc Z	J Z	3 5	3 5	3 2	32	ZC	ZC
	#IS	1	247	248		52		255	258	259	260	261	267	268	271	276	277	278	240	100			282	284	285	292	294	305	310	311	312	313	317	322	323	324	326	327	328	002	227			336	342	345

Table 8 (continued).

ଟି
ЯĽ
tir
ő
3
8
-e
Tab
•

ŝ 

IIMATES 4	। । । । । ।																																												
. ESI	•			20							55	16																					20	2											
BEST 2	; ; ; ; ;			33							50	13			201								5	ł									17	:									20		
~	, 1 1 1 1	~	2	35	2	-	N	-	-	۴-	61	14		-	176	N		-	~	I <del>~</del>		• -	27	i -		• •	- M		• •	·	• «		18	<u>-</u>	-	ſ	4	- 、	4	m ·	-	-	ŝ		•
OBS		ΤF	ΚF	ÿ	RW	ч	5	ç	ΤF	ΤF	SL	ΤF	SL	ΤF	SĽ	SL	Sr	ΚF	i H	КF.	11	S	S	SL	Т. Т.	Ч	s	ЧЧ	ΚF	К,	Т Ч	I	Ĭ	L L L	2 14	2 1	2 2	2 2	7	Ľ.	К,	Ъ	S	КF	Ŧ
LONGITUDE	-	12010.54	11952.35	11938.29	11941.52	12000.61	12017.44	12022.03	12028.50	12022.39	11956.85	11936.18	11939.83	11945.66	11946.31	11946.52	11947.19	11950.42	11952.19	11943.81	11945.84	11947_58	11950.24	11951.43	11952.72	11952.16	11951.45	12015.70	12019.59	12022.13	12031.41	12039.15	12040.61	12037 66	12013 01	12012 74	12012 26	11024 70	11920-70	12058.48	12029.97	12029.59	12015.25	11957.59	11955.20
		3326.03	3321.20	3255.82	3258.41	3314.43	3328.55	3332.07	3304.12	3308.92	3257.32	3253.86	3257.15	3302.10	3302.66	3302.80	3303.52	3306.01	3307.30	3306.19	3308.05	3309.45	3311.55	3312.88	3313.73	3323.74	3326.51	3341.54	3338.59	3336.27	3328.25	3321.43	3320.71	3309.48	3329.70	3317 50	31 4122			5552.69	00.0255	3325.08	5515.58	3310.11	3309.86
TIME		1529.70	1628.62	1137.87	14-741	1208.32	1219.72	1226.30	1620.15	1624.50	1009.87	1028.45	1038.43	1042.38	1042.83	1053.63	1054.18	1056.22	1057.40	1104.52	1108.32	1109.50	1115.28	1121.48	1126.32	1137.08	1138.90	1440.32	1444.15	1445.98	1454.40	1500.02	1500.58	1547.30	1611.47	1647 15	1648 30	20 9000		86.7660	80.cuui	1004 05	1016.85	1029.80	1040.5/
DATE		930530	930530	930619	950619	950619	950619	930619	930619	930619	930724	930724	930724	930724	930724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30724	30774	70202	2072/		20725		50/25		30725	50/25
TYP		٩	ŝ	۹. ۱	n i	<u>م</u>	۵.	۵.	۵.	٩	۵.	٩	۵.	۵.	۵.	۵.	<u>م</u>	s	۵ ۵	<u>م</u>	٩ د	S	s	s S	۵ ۵	0	0	٩ ٥	٩ ٩	٩ ٥	۵ م	s 0	٩ 9	ۍ م	0	s S	0			20	× 6 × 1	<u>م</u> د	5 ( 5 (	י כ סי	א ה
*																																													
SPEC4																																													
*																																													
SPEC3																																													
*			à	33	8					1	ŝ	93		1	8								22										54									L J	2		
SPEC2			-	3 9	3					:	â	00		1	8								8										8									2	202		
*		80	35	<u>♀</u> ≿	ż g	3 8		3	8	3.	<b>⊽</b> 1	~ ;;	88	3.	- :	B	83	8	8	8	8	8	m	8	8	8	8	8	8	8	8	8	9	8	8	00	00	00	22	3 2	2 2	2 2	28	32	R
SPEC1		2C Z	25	ן ג ל	י י י י י	ן ג א ר	3 6	3		ZC	51	21	zc	2		ZC	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1	zc 1	zc	ZC 1	zc	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1		3 2		2 2	35	35	17 17								
+1S		348	757	25,55					102	202	1000	2 4 7	ģ;		202	200	569 200	370	371	372	373	374	376	377	379	383	388	398	399	400	402	404	405	407	412	422	423	427	CE7	724				0440 VYV	110

Table 8 (continued).

5																																											
IMATES																																											
EST]																								!	ñ																		
BEST 2		м		ц Ц	2			19																	ø																		
-	t t t t t t t t t	m		- 72	ç ←	. <b>e</b> us	• •	1	-	-	-	-		2	-	-	-	-	-	-	~	-	-	-	23	-	-	- 1	N				- •	-	-	-	ц.	-	-	~	4	<b></b>	<b>e</b> '
OBS	1 1 1 1	KF	ᆣ	- 7	2 2	ЧЧ Ч	ц Ч	Ë	Ľ	님	ΤF	ΤF	ΚF	Ŗ	Ŗ	Ŧ	ΤF	КF	К	KF	КF	КF	۴	Ϋ́	¥	Ļ	M	M	2	ម្ពុទ	5	E S	5	L L	g	с Г	Z	ŋ	ч Ч	1	ц Ч	ЪС	5
ONGITUDE	-               	11956.78	12027.45	21 21021	12010-20	12008.94	12007.57	12006.34	12001.75	12001.48	11953.40	11953.02	11952.84	11945.66	12013.74	12000.36	12011.82	12015.44	11918.90	11948.26	11950.55	11953.08	11958.42	11950.13	11948.64	11939.87	11943.75	11952.99	119.4441	12018.53	11930-88	11955-90	11955-87	11940.00	11948.96	11954.74	12008.12	12028.18	12030.55	12018.57	11952.98	11950.94	11952.27
LATITUDE I	             	3311.35	3339.60	22 1 +CC	3335,82	62 7222	3333.62	3332.78	3328.78	3328.64	3322.35	3322.13	3322.02	3335.30	3244.33	3301.38	3310.66	3313.58	3408.63	3325.01	3322.80	3320.54	3316.18	3309.96	3311.22	3252.56	3306.19	3313.96	3315.73	3238.21	5550.50	5555.82	5555.92	3250.07	3304.17	3315.31	3328.21	3318.14	3320.56	3259.27	3314.51	3316.14	3320.69
TIME	1 1 1 1 1 1 1	1044.47	1113.42	22 0111	1130.82	1131.68	1132.72	1136.28	1141.82	1141.92	1147.52	1147.77	1147.88	1157.32	1140.60	1159.25	1207.73	1210.17	1237.18	1430.50	1431.60	1433.20	1437.07	1554.78	1555.77	1606.80	1625.62	1633.37	1635.02	1518.97	cc.8cU1	1109.77	1109.92	1018.53	0958.33	1145.17	1625.12	1038.37	1040.23	1532.37	1519.77	1521.12	1459.87
P DATE	5 5 7 7 7 7 7	930725	930725	2010020	527050	030775	930725	930725	930725	930725	930725	930725	930725	930725	930730	930730	930730	930730	930730	930730	930730	930730	930730	930730	930730	930731	930731	930731	930731	930827	951002	951002	931002	931016	931022	931022	931022	931023	931023	931023	931024	931024	931120
Т		0	0	10	n u	<b>v</b> (	s vi	. 0	. ۵.	٩	۵.	۵.	S	0	S	٩	٩.	0	0	0	0	ፈ	٩	٩	٩	٩.	S	S	۹.	α.	۵.	α,	S	٩.	s	<u>а</u>	۵.	s	۵.	۵.	٩	s	۹
*																																											
SPEC4																																											
%																																											
SPEC3	           																																										
*	*     	67		Ş	8			50	2																62																		
SPEC2	8 8 8 8 8 8 8 8	2			2			-	3																2																		
nan'		S	00	<u></u>		3 2	38	3 ٢	- 8	88	8	8	8	8	8	8	8	8	8	8	8	8	8	8	38	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
SPEC1		ZC	z	, zc	2	י א ר א ר	ן ר קיר קיר	3 5	3 2	202	ZC	, S	ZC 1	ZC 1	ZC 1	ZC 1	ZC	zc J	1 Z	ZC 1		zc 1	ZC 1	ZC 1	SC	ZC 1	ZC J	ZC	ZC	ZC ZC	ZC 1	zc	zc	zc 1									
SI#	1 1 1 1 1	448	452	474 174	407 0 1 1		404	204	33	52	466	467	468	472	507	508	509	510	515	520	521	523	524	528	529	542	547	548	549	558	562	564	565	566	577A	581	589	595	596	603	616	617	623

	5																																												
TIMATES	4																																												
U L	<u>m</u>																																						180						
U L L L	2 N																																						80	500					
		r	-	- •	- (	N +	- 1	۰,			- •	- 1	1 0	~ -		- r	V •	- ,	•	4	-	M	4	2	N	-	-	<b>-</b>	•	<del>, "</del> ,	-	•	-	-	-	-	•	-	130	1200	-	<b>-</b> 1	<b>.</b>	9	N
	OBS		ŋc	L C	5	5	-	<u></u>	2	D L	5		3	3 5	<u>ן</u> קינ	ي ي	3	3	29	9 1	ЪС	g	ч Ч	ÿ	с г	с Ч	с Г	ΤF	ð	5	5	ÿ	ц	Ð	Ч,	U,	Ŷ	SB	ЧŻ	, Ч	SB	SB	КF	SB	SB
			11954.26	11955.06	12.2001	12.12021	12000.74	11052.20		11051.01	10-01411	4) - 26411	11020.99	92 70011	11010 07	11011 00	11711.00	Y0.CIVII	c/ . 61.611	11921-87	11922.73	11926.16	11916.42	11915.87	11914.96	11913.05	11912.73	11953.47	11914.58	11914.19	11904.62	11855.20	11849.80	11848.20	11847.97	11845.56	11837.90	12013.11	11942.67	11903.24	11830.27	11832.14	11834.49	11835.28	11856.45
			3319.94	3319.21	74-7100	2226 00		10.0100		14.2100	13-3100	++- I CCC	12-1000	40.14CC	27.44.CC	CI -04CC	CI - /#CC	2040.U4	02.000	5551.58	3351.97	3353.65	3347.27	3346.61	3345.41	3342.99	3342.57	3322.21	3315.60	3315.61	3316.30	3317.73	3317.01	3317.03	3317.08	3317.08	3317.47	3330.17	3257.00	3310.35	3250.89	3253.29	3256.57	3258.21	3229.80
	TIME		1500.83	1501.35	c0.0011	11.22 00		30 7771		1440.02	00E2 77	77 1171	1410 011	14.01.41	11.05 12	20 7071	CO.0241	77 6774	1447.00	1448.42	1448.92	1450.93	1517.15	1517.63	1518.42	1520.05	1520.32	1037.17	1433.53	1433.68	1443.33	1451.92	1500.98	1501.75	1501.87	1503.15	1507.08	1136.92	1537.33	0928.97	0956.72	0958.25	1002.62	1003.60	1004.67
	DATE		931120	931120	171102	121129 021121		121104		121166		4021 CK	701204	4021 CA	4071C4	102120	4071 CK	4071CK	102126	951204	931204	931204	931204	931204	931204	931204	931204	931205	931205	931205	931205	931205	931205	931205	931205	931205	931205	931230	931230	931230	931231	931231	931231	931231	931231
	ΤYP		۵.	Ś	ה מ	<u> </u>	L (	<u>г</u> с	. (	0 0	L (	0 0	L 4	~ 0			L C	2 6	ייב	<b>D</b> . I	۵.	۵.	٩	٩	۵.	م	۵.	٩	۵.	٩	۵.	0	۵.	Δ.	٩.	٩	۵.	م	۵.	0	٩	۹.	۵.	م ،	۵.
	%																																					•	-						
	SPEC4																																						BP						÷
	~~~~~																																					ļ	67						
	SPEC3																																						8						
	%																																						3	8					
	SPEC2																																						8	â					
nea	%		8	8.8	3 8	B 8	38	38	38	38	38	38	38	38	38	38	3 8	38	3.8	8.8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	-	-	8	8	8	83	3
CONTIF	SPEC1		ZC 1			22	2 C	2 4	 	35	2 0	 	24	27	2 2 2	- - , c , r	 	 	22	ZC	ZC 1	ZC 1	ZC	ZC	ZC 1	Z	ZC	ZC 1	ZC 1	ZC 1	ZC 1	ZC 1													
lable o	#1S		624	625	3	420 823	200	140	1	CH0		040 727			700		+C0		800	659	660	661	663	664	665	666	667	676	681	682	684	686	687	688	689	690	691	203	708	210	712	713	714	715	716

	ہ ¦																																												
ESTIMATES	3 4					6																																							
BEST	~					20			13									80																											
			.	-	2	14	,	-	8	8	M	M	2	2	80	-	-	130	-	-	-	-	ω	ę 1		~ ,	,	- ,	- !	2		- -	4 -					- •	- 1	γ) (~ ~				
	OBS		SB	КF	КF	KF	SB	ΚF	SB	КF	SB	SB	ЧY	SB	SB	КF	SB	KF	SB	ΚF	SB	Ŗ	SB	SB	¥	Д Т	R S	5	88	88	80	0 1	2 0	3 4	3 L	2	3 1	Ţ?	T T	88	8		L U	L M	
	ONGITUDE		11836.81	11837.12	11838.04	11838.52	11839.72	11840.07	11850.37	11853.68	11857.55	11858.05	11858.67	11858.87	11859.25	11859.86	11900.73	11900.89	11853.65	11853.05	11852.06	11843.15	11831.54	11921.34	11920.45	11920.10	11919.87	11916.99	11915.62	11915.01	11710.02	11006 01	1100% 6%	11004 17	11001 00	11001 55		11859.45	11859.16	11855.03	11846.12	11924.56	12000	11957.80	
			3300.39	3300,63	3302.06	3302.75	3304.21	3305.10	3315.14	3318.29	3322.09	3322.84	3323.95	3324.32	3324.89	3325.81	3327.27	3327.82	3326.92	3326.85	3326.94	3327.72	3325.11	3401.45	3400.04	3359.51	11.6655	3353.72	5548.88 	5347-96	10.0400		27 7222	3373 66	221 26	87 0222		5550.08	5550-07	3329.96	5529.25	5245.59 72// 2/	7200 10	3318.14	
	TIME		1005.03	1005.22	1006.08	1006.45	1011.02	1300.43	1318.17	1323.55	1328.83	1329.38	1330.02	1330.27	1330.63	1331.25	1332.23	1332.47	1350.40	1350.65	1351.08	1357.03	1412.57	1420.82	1421.67	1421.98	1422.25	1425.63	1428.70	1429.53	1440.73		1506 78	1507.27	1512 50	1512 88		151.05	cl.clcl	1520.42	1524.40	1006.82	21.0101	1128.22	
	DATE		931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	931231	940101	940101	940101	9440101	940101	940101	940101	101046	0/0101	01010	070101	01010	940101	101014	101046	940101	940101	940101	940101		940108	
	TYP		٩	٩	٩.	٩.	٩	۵.	٩	٩	۵.	۵.	٩	۵.	٩	٩	٩	٥.	٩.	٩	٩	٩	0	۵.	۵.	<u>م</u> ا	a .	۵. ۱	a . 1	۵. ۵	2 0	<u> </u>	- 0		0 0	. 0	° '	a. 1	a . 1	۹.	a .	0 4	<u>د</u>	<u> </u>	0
	*																																												
	SPEC4																																												
	~	 - -																16												0															
	SPEC3																	Ħ											i	BA															
	*					22												2					20							9															
	SPEC2					2												99					2						ł	Ħ															
	*		100	100	100	∞	100	100	10	100	100	10	100	10	<u>1</u> 0	10	100	3	100	<u>1</u> 00	8	100	ß	8	100	89		89		88	3 5	38	3 2	32	200	3 2	3	23	B	8	8	88	3 3	38	
	SPEC1		ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	ZC	Z	ZC	Z	ZC	Ŋ	SZ	ZC	Z	Z	Ŋ	S	ខ្ល	2	2 F	3 5	3 5	3 2	3 2	3 5	י. קר גר	3 6	21	2	z		2	3 5	32	i
	#1S	 	717	718	719	720	721	722	725	726	728	729	20	121	732	734	735	736	739	740	741	743	746	756	151	758	2	092 2	2	202	207	# 92	25	25	Ĕ			21	2	82	Ś	80		162	

Table 8 (continued).

• *	5																																														
STIMATES	3 4						.+																																								
Ë							7																																								
BES	2						15																											24								200					
	-		-	•	-	-	18	•	•			•	- •		•	~	-	-	•	4		- r			-	2	-	-	-	-	-		-	31	-	•	-	-	-	~	m	400	-	*	t	2	30
	OBS		97	MA	μ	MA	MA	ЭĽ	97	3 5	3 4	3 9	2	с Г	9	с Г	ŋ	ΤF	ŋ	11	<u>د</u>	3	2	5	5	ΤF	9	1 F	ÿ	ŋ	ΤF	ΤF	с Г	S	ΤF	Ч	ŋ	ΤF	5	11	ΤF	1F	ΤF	ΤF	ΤF	ΤF	с Г
			11950.53	11946.85	12031.18	12024.32	11952.00	11955.12	12006_00	11040 30		CC.0C411	77-16411	11955.63	11955.31	11958.37	12004.80	11928.77	11928.83	11929 18	11020 27	11020 ED	00, 00011	11929.49	11929.43	11929.59	11930.19	11930.17	11930.22	11930.22	11930.43	11930.72	11955.40	11911.50	12017.18	11952.04	11953.51	11953.90	11954-50	11954.60	11954.96	11955.67	11958.11	11959.94	12000.17	12000.33	12000.35
			3312.35	3308.94	3259.19	3333.92	3315.18	3304 18	3301 68	3256 44	2252 EO	7752 00	60.2020	3256.51	3303.53	3301.28	3255.97	3323.89	3324.24	3327, 13	2277 45	22, 0022	01001 0011	06.9265	3329.97	3331.18	3334.38	3336.78	3340.16	3340.16	3341.20	3342.46	3304.52	3306.48	3340.83	3320.90	3325.49	3326.24	3327.93	3328.54	3330.36	3332.73	3345.49	3349.06	3350.26	3351.57	3351.66
	TIME		1132.82	1135.38	1044.95	1447.02	0952.68	1007.83	1042 15	1448 47	11/0 10	1449.10	CJ . 4441	1514.53	1524.92	1527.03	1531.62	1001.50	1001.72	1003.45	1003 45			1004.98	1005.30	1006.05	1008.13	1009.58	1011.70	1011.73	1012.27	1013.08	0934.70	1117.95	1236.07	1255.13	1258.68	1259.12	1300.13	1300.45	1301.58	1303.00	1328.33	1330.97	1331.70	1332.43	1332.52
	P DATE		940108	940108	940115	940115	940116	940129	07170	040120		740120	740129	940129	940129	940129	940129	940130	940130	940130	040130	021070		940150	940130	940130	940130	940130	940130	940130	940130	940130	940215	940215	940225	940225	940225	940225	940225	940225	940225	940225	940225	940225	940225	940225	940225
	` ∠		٩	۹.	S	S	S	S	0	`		~ 6	ר ו	۵.	۹.	٩	۵.	Φ.	S	-	. 0	, ,	- 4	יב	S	۵.	٩	Ъ.	S	۵.	٩	٩	۵.	0	۹	0	S	٩.	<u>م</u>	Δ.	<u>م</u>	۵.	0	٩	٩	۵.	۵.
	%															,																															
	SPEC4																																														
	%																																	2													
	SPEC3																																	LB													
	%						57																											5								6					
	SPEC2						2																											ER								â					
	%		8	8	8	8	43	8	8	88	8	38	3 8	8	8	8	8	8	8	8	38	38	3 8	33	8	8	8	8	8	8	8	8	8	2	8	8	8	8	8	8	8		8	8	8	8	8
	SPEC1		zc 1	ZC 1	ZC 1	ZC 1	ZC	ZC 1	75.1	77 1	2 C	2 C C	7	ZC 1	70.1	1 77	2 5	201		ZC 1	ZC	ZC 1	Z	ZC 1																							
	#1S		792	262	817	818	822	824	826	836	220	100	000	841	842	843	844	848	849	850	851			353	854	855	856	857	858	859	860	861	863	868	871	873	874	875	876	877	878	879	881	882	883	884	885

Table 8 (continued).

- e.
\sim
77
ž
¥
1
<u>c</u>
100
÷
~
~
×.
0
\sim
$\overline{}$
с 8
8
8 (
e 8 (
ile 8 (
ble 8 (
able 8 (
Table 8 (
Table 8 (

	ہ ا	1																																											
IMATES	4																																												
ESI	m														38																														
BEST	2									¥	c				80	-																													
	-		2		-	-		•				· ^		ŝ	85		•	e	-	-	-	-	-	m	2	~		•	e 1		0 7	-α	0 ē	<u>0</u> į	י י	M 1	-	5	80		e	<u>د</u> ہ	ე ს	ιΩ τ	-
	OBS		ΤF	Т	К	ΚF	Ϋ́	L L	5	ј ц) -	- 4	1 1	9	Ч	55	ΤF	К	КF	Ŗ	JG	ŋ	К,	ŋ	ŋ	15	4	д Г	15	9	<u>۲</u>	Ţ,	2 2	2 3	7 7	2	Ľ.	Ľ,	КF	д Т		ц Т	Ϋ́	53	Ľ	ž
			11950.11	11954.13	11955.48	12013.38	12013.77	12035 48	12044 23	12023 72	12031 35	12022_98	12040.01	12043.77	12044.43	12051.13	12051.39	12053.15	12058.16	12056.46	12054.29	12053.37	12052.95	12014.00	12036.73	12039.19	12044.65	12007.52	12007.27	12025.01	44.71021	11011 00	11011 25	CC.11711	11910.02	11909.68	11909.29	11908.95	11908.27	11902.92	11900.99	11901.17	11901.59	11901.52	11901.04
			3251.30	3255.08	3256.13	3311.44	3311.75	10 0222	3323, 60	221/ 02	CZ C122	3305.68	3307.52	3310.22	3310.85	3316.29	3316.47	3318.04	3319.40	3320.49	3322.31	3322.91	3323.22	3329.51	3310.64	3308.39	3303.90	3255.00	3255.21	3333.60	5245.66	11.0040	01.10225	UC.00000	0.0000	3336.23	5555.72	3335.31	3334.42	3330.98	3333.72	3335.31	5551.26	3338.16	04.4555
	TIME	1 1 1 1 1 1 3	0959.40	1002.40	1003.30	1016.15	1016.48	1070 08	1049.15	1055 08	1100 75	1116.63	1203.98	1206.03	1206.48	1215.30	1215.47	1216.63	1224.03	1225.00	1226.37	1226.88	1227.12	1447.78	1507.35	1516.05	1525.05	1608.28	1608.43	0946.52	1006.80	CU.0211		1204-42		1205.77	1206.13	1206.42	1206.97	1213.93	1215.67	1216.65	1211.84	1218.48	cl . KI 21
	DATE		940226	940226	940226	940226	940226	960020	040226	0/.026	0702040	9702076	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	940226	122046	740661	122046	740221	940227	940227	940227	940227	940227	940227	940227	72046	940227	740221
	TYP		۵.	۵.	۵.	۵.	۵.	Δ.	. ۵	. 0	L 0	. 🍳	. D	•	۵.	S	۵.	a.	0	۵.	٩	۵.	۵.	S	۵.	0	٩	٩.	٩	0	0	2 C	- 6	- (7	0 . (۵.	م	٩	o	0	۵. ۵	2 1	۵. ۱	ъ
	%	1 1 1 7 4																																											
	SPEC4	1 1 5 1 8																																											
	%	2 9 4 1													65																														
	SPEC3	4 													9																														
	%	1 1 1													-															1	80														
	SPEC2	J I 1 1 1 1 1 1 1 1													a																9														
5	~		100	100	10	100	00	2	22	2 2	88	28		8	54	0	8	00	00	8	8	8	8	8	8	8	8	8	8	8	ខ្លួ	38	3 2	3 8	ß	88	8	8	8	8	8	88	38	88	3
	SPEC1	1 5 6 6	Z	JZ	Z	22	Ŋ		3 2		3 2	2 2	22	, Z	ZC	, Z	, ZZ	ZC	ZC	ZC	ZC 1	ZC	ZC 1	ZC 1	ZC 1	Z	22	ZC 1	Z	ZC	21	 	3 6	22	2	22	ZC 1	201	22	zc 1	70				
2222	\$1#		893	894	895	896	897		500		100	200	908	606	910	911	912	913	916	917	918	919	920	921	923	928	929	930	931	932	935 270	676 670		<u>.</u>	++ ×	945	946	647	948	950	951	952 252	<u> </u>	954 971	ŝ

ŝ	÷.																																											
TIMATES 4					188																																							
T ES	1				110																																					Р	2	
BES	1				200																																					g	37	
-		m	-	-	300	-	•	•	. «-		- 7	•		-	. e	*	-	-	-	-	-	~	-	-	-	-	4	-	4	-	4	-	-	2	4	2	-	-	ę	-	-	400	ñ	N
OBS	1 1 1 1	ΤF	ΚF	ΤF	ΤF	ML	ML	Ŵ	X	2 #	: ¤	3 4	B,	BL	BL	87	87	8	¥	5	ÿ	ç	<u>с</u>	5	9	9	Ĕ	¥	ភ្ន	٩C	9 P	g	₹	Å	g	ΤF	ЯĻ	1F	ц Н	Ŗ	Ŗ	ΤF	<u>۲</u>	КF
LONGITUDE	6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11902.45	11903.06	11907.64	12007.75	12017.57	12017 74	12009_32	12017 51	12010 70	12010 50	12002.55	11954.43	11948.68	11946.19	11945.45	11953.00	11953.75	11959.04	11945.48	11947.46	11951.78	11957.13	12003.18	12007.96	12035.68	12021.79	12017.13	12016.59	12016.30	12016.13	12011.16	12009.73	12008.48	12003.52	12003.63	12003.85	12008.27	12019.43	12017.51	12010.94	11816.11	11847.28	11859.6
LATITUDE	3 7 7 7 7 7 7 7 8 8 8 8 8	3343.16	3345.92	3341.58	3329.01	3338.31	3339.90	3254,81	3302 35	3260 62	3328 06	3322.12	3315.26	3310.64	3308.11	3307.67	3321.83	3322.59	3326.97	3247.83	3249.50	3252.98	3257.60	3302.70	3306.99	3330.15	3338.42	3334 .34	3333.90	3333.60	3333.42	3329.53	3328.54	3327.27	3322.99	3305.50	3304 34	3255.78	3242.47	3247.55	3301.84	3303.91	3307.70	3509.61
TIME	8	1221.43	1223.17	1443.17	1015.68	1052.53	1053.58	1449.95	1456 40	1543 15	1212 65	1218.40	1226.48	1230.20	1232.12	1232.55	1254.98	1255.60	1259.52	1027.45	1028.98	1032.05	1036.08	1040.57	1043.95	1103.77	1126.55	1129.92	1130.23	1130.48	1130.57	1133.77	1134.67	1135.73	1139.03	1418.00	1421.32	1430.70	1503.93	1506.88	1528.80	1321.08	1346.47	16.6621
DATE		940227	940227	940227	940313	940313	940313	940313	212070	212070	045040	622076	940329	940329	940329	940329	940329	940329	940329	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940416	940429	940506	940506	940506	940506	940506	940507	940507	704070
τYΡ	1	٩	٩	0	٩	٩	٩	. <i>0</i> 1	• •	۵.	. c	<u>م</u>	.	٩	۵.	٩	۵.	4	S	٩	۵.	٩	۵.	٩	S	Δ.	۵.	٩	٩	۵.	ፈ	ፈ	٩	٩	٩	0	م	٩	٩	۵.	٩	۵.	۹.	ġ.
*	1																																											
SPEC4																																												
*																																										38		
SPEC3	1																																									8		
*	1				<u></u>																																					49	26	
SPEC2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				LB LB																																					2	8	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100	001	8	-	00	001	8	2	200	28	28	0	8	00	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	00	8	00	8	8	13	n	8
SPEC1	1	ZC	ZC	ZC	zc	Z	ZC	22		3 5	3 2	12		ZC	ZC	ZC	. JZ	ZC	ZC	Z	ZC 1	ZC	ZC	ZC	ZC 1	ZC	, JZ	ZC	ZC 1	ZC ,	ZC 1	, JZ	ZC	S	ZC									
SI#	1	956	957	962	968	026	179	179	078	280	0001	1010	1012	1013	1014	1015	1016	1017	1018	1026	1027	1028	1029	1030	1031	1033	1034	1035	1036	1037	1038	1039	1041	1042	1043	1052	1054	1057	1060	1061	1065	1073	1074	1076

Table 8 (continued).

Table 8 (continued).

. .

ы. О															-											
TIMAT 4	1 1 1 2 2																									
31 ES	t t T 1								4	-					N	2	~			4	-					
Sä BE									M	<b>-</b>				-	2	2	N		-	4	-	2	-			
-	1 1 1 1 1 1		-	-	-	-	-	-	4	-	2	4	-	-	2	2	2	-		4	-	2	-	<b>e</b>	-	÷
OBS		7	2	11	КF	ш	Ъ,	M	КF	g	9	ð	ÿ	ŋ	ŋ	ð	Ŋ	M	٦C	Ŧ	8	۲	L	ŋ	9r	g
ONGI TUDE		12004 28	00-00071	12016.89	12028.67	12029.48	12016.27	12010.52	12012.23	12019.97	12028.67	12011.79	12020.91	12004.79	11954.14	12051.40	12008.94	11856.65	12020.15	12035.74	12003.90	12058.14	12042.44	12012.23	12005.75	11845.36
	2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A1 C/CZ	7545.10	3303.46	3250.52	3249.10	3248.84	3244.90	3337.35	3318.10	3304.02	3242.67	3256.64	3257.12	3249.03	3316.34	3326.98	3246.39	3305.03	3303.09	3305.42	3210.34	3258.36	3318.18	3316.71	3246.77
TIME	1 2 5 1 1 1 1	15.0 27	10.7411	1605.07	1620.90	1621-85	1649.08	1227.37	1428.43	1534.17	1229.72	1201.37	1115.73	1104.93	1007.08	1057.68	1423.07	0957.82	1050.70	1136.50	1418.23	1233.35	1539.27	1142.22	1453.73	0954.17
DATE		0/.0518	240210	940523	940523	940523	940523	940523	930130	930130	930212	930306	930509	931022	931023	931121	931121	940101	940129	940129	940506	940518	931022	931023	931023	940101
ТҮР		0	L	۵.	0	C	0	0	۵.	۵.	۵.	0	0	٩.	0	٩	0	0	۵.	٩	۵	۵.	٩	٩	0	0
*	1																									
SPEC4	r 1 1 1 1 1 1																									
%	1 1 1																									
SPEC3																										
%																										
SPEC2	1 1 1 1 1																									
*	5 1 3 4	001	3	100	100	100	8	<u>10</u>	8	<u>6</u>	8	<u>8</u>	8	8	00	00	001	8	8	00	8	8	8	8	8	8
SPEC1	5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	75	ר ר	ZC	ZC	ZC	ZC	ZC	IZ	21	. 12	. 1Z	. 12	17	1Z	17	Z1	, IZ	1Z	1Z	, IZ	, 1Z	Ŋ	2	2	, NZ
#IS	1 1 1 1 1 1	1087		1089	1091	1092	1093	1095	33	36	103	155	257	578	593	632	637	784	827	831	1053	1080	587	599	602	783













Figure 4. General bathymetric features of the study region, showing the 200, 500, 1000, 2000, and 3000 meter contours.



(N) EATITUDE (N)





Figure 6. Spatial plot of relative group encounter rates (sightings/100 km) within the SWFSC study area during 1993-1994.



Figure 7. Spatial plot of relative animal encounter rates (animals/100 km) within the SWFSC study area during 1993-1994.



(N) FATITUDE (N)
















(N) FATITUDE (N)



Figure 12. Locations of 18 on-effort Dall's porpoise sightings.



Figure 13. Locations of all (n=5) killer whale sightings.



Figure 14. Location of one off-effort short-finned pilot whale sighting.



Figure 15. Locations of all (n=7) minke whale sightings.





LONGITUDE (W)

72

(N) EATITUDE (N)





(N) AUTITUDE (N)





Figure 19. Locations of 473 gray whale sightings recorded during Minerals and Management Service (MMS) and Southwest Fisheries Science Center (SWFSC) surveys conducted during the periods 1975-1983, and 1991-1994, respectively.



(N) JULITUDE (N)



Figure 20. Locations of all (n=4) Baird's beaked whale sightings.



Figure 21. Location of one on-effort pygmy sperm whale sighting.



Figure 22. Locations of all (n=12) sperm whale sightings.







Figure 24. Locations of all (n=2) mesoplodont beaked whale sightings.







Figure 26. Locations of all (n=4) harbor seal sightings.

82

(N) AUTITUDE (N)



Figure 27. Locations of all on-effort (n=400) California sea lion sightings.





(N) AUTITUDE (N)

Figure 29. Locations of all on-effort (n=12) unidentified dolphin sightings ( $\bigcirc$ =unidentified whitebelly dolphin,  $\diamond$ =unidentified delphinid,  $\square$ =unidentified small delphinid or porpoise).



Figure 30. Locations of all on-effort (n=14) unidentified whale sightings ( $\bigcirc$ =unidentified whale,  $\diamond$ =unidentified small whale,  $\square$ =unidentified large whale,  $\checkmark$ =unidentified ziphiid).



(N) AUTITUDE (N)











LONGITUDE (W)



Figure 33. Locations of all (n=11) bottlenose dolphin sightings.

89

LONGITUDE (W)

117°



Figure 34. Locations of all (n=2) humpback whale sightings.

## **RECENT TECHNICAL MEMORANDUMS**

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost \$9.00. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Science Center are listed below:

NOAA-TM-NMFS-SWFSC-207 The estimation of perpendicular sighting distance on SWFSC

research vessel surveys for cetaceans: 1974 to 1991. J. BARLOW and T. LEE (August 1994)

208 The physical oceanography off the central California coast during February-March and May-June 1992: a summary of CTD data from pelagic young-of-the-year rockfish surveys. K.M. SAKUMA, H.A. PARKER, S. RALSTON, F.B. SCHWING, D.M. HUSBY, and E.M. ARMSTRONG (September 1994)

209 The physical oceanography off the central California coast during March and May-June, 1993: a summary of CTD data from pelagic young-of-the-year rockfish surveys.
K.M. SAKUMA, H.A. PARKER, S. RALSTON, F.B. SCHWING, D.M. HUSBY, and E.M. ARMSTRONG (September 1994)

- 210 The Hawaiian monk seal at French Frigate Shoals, 1990-91. M.P. CRAIG, J.L. MEGYESI, C.S. HALL, J.L. GLUECK, L.P. LANIAWE, E.A. DELANEY, S.S. KEEFER, M.A. McDERMOND, M. SCHULZ, G.L. NAKAI, B.L. BECKER, L.M. HIRUKI, and R.J. MORROW (September 1994)
- 211 Report of cetacean sightings during a marine mammal survey in the eastern Pacific ocean and the gulf of California aboard the NOAA ships *McArthur* and *David Starr Jordan* July 28-November 6, 1993. K.F. MANGELS, T. GERRODETTE (October 1994)
- 212 An evaluation of oocyte size in multiple regressions predicting gonad weight from body weight: A test using Hawaiian ehu, *Etelis carbunculus*.
   B.B. LAU and E.E. DeMARTINI (Ocotober 1994)
- 213 The Hawaiian monk seal on Laysan Island, 1987 and 1989. B.L. BECKER, P.A. CHING, L.M. HIRUKI, and S.A. ZUR (October 1994)
- 214 The Hawaiian monk seal on Laysan Island, 1991. B.L. BECKER, K.E. O'BRIEN, K.B. LOMBARD, and L.P. LANIAWE (February 1995)
- 215 Seasonal, vertical, and horizontal distribution of four species of copepods around Oahu, Hawaii: Data report R.P. HASSETT, and G.W. BOEHLERT (February 1995)
- 216 The Hawaiian monk seal in the northwestern Hawaiian Islands, 1992. T.C. JOHANOS, L.M. HIRUKI, and T.J. RAGEN (March 1995)